• Title/Summary/Keyword: granule cells

Search Result 189, Processing Time 0.022 seconds

Ultrastructural Study on the Development of the Small Granule-Containing Cells in Superior Cervical Ganglion of Human Fetus (인태아 상경신경절내 소형의 과립함유세포에 관한 전자현미경적 연구)

  • Yoon, Jae-Rhyong;Min, Young-Don;Nam, Kwang-Il
    • Applied Microscopy
    • /
    • v.26 no.3
    • /
    • pp.349-367
    • /
    • 1996
  • The development of small granule-containing cell in the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm crown rump length (10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cells, primitive neuroblasts, and unmyelinated nerve fibers together with blood vessels. At 90 mm fetus, the superior cervical ganglion consisted of neuroblasts, satellite cell, small granule-containing cells, and unmyelinated nerve fibers. Two morphological types of the small granule-containing cells in the superior cervical ganglion were first indentified at 90 mm fetus, but were rare. Type I granule-containing cell occurred in solitary and had long processes, whereas type II cells tend to appeared in clusters near the blood capillaries. The granule-containing cells were characterized by the presence of dense-cored vesicles ranging from $150{\sim}300nm$ in diameter in both the cell bodies and processes. Other organelles included abundant mitochondria, rough endoplasmic reticulum, neurotubules, and widely distributed ribosomes. The granule-containing cells had long processes similar to those found in principal ganglionic cells. They could be identified by their content in dense-cored vesicles. The small granule-containing cells increased somewhat in size and number with increase of fetal age. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma and processes of type I granule-containing cells and preganglionic axon terminals were observed. In addition, synaptic junctions between the processes of granule-containing cells and presumed dendrite of postganglionic neuron were also observed from 150 mm onward. On the basis of these features type I granule-containing cells could be considered as interneurons. The clusters of type II granule-containing cells were located in the interstitial or subcapsular portions of the ganglion, and had short processes which ended in close relation to fenestrated capillaries. Therefore it may be infer that clusters of type II granule-containing cells have an endocrine function.

  • PDF

Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses (인태아 상경신경절 발육에 관한 전자현미경적 연구)

  • Kim, Dae-Young
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.7-22
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length(10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70 mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule-containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest. The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and may serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

Effects of Chronic Lead Exposure on Glutamate Release and Uptake in Cerebellar Cells of Rat Pups

  • Yi, Eun-Young;Lim, Dong-Koo
    • Archives of Pharmacal Research
    • /
    • v.21 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • Changes in the release and uptake of glutamate in cerebellar granule and glial cells of offspring of lead-exposed mothers were determined. In cultured cerebellar granule cells exposed to lead for 5 days, glutamate release was less influenced upon N-methyl-D-aspartate (NMDA) stimulation than that in the control. Although the NMDA-stimulated release of glutamate in cerebellar granule cells prepared from lead-exposed first generation pups was not different from that of the control group, the S-nitroso-N-acetylpenicillamine (SNAP)-stimulated release of glutamate in cerebellar granule cells obtained from lead-treated pups was less elevated than that in the control. Furthermore, in cerebellar granule cells obtained from lead-exposed second generations pups, glutamate release did not respond to both NMDA and SNAP stimulation. In cerebellar glial cells exposed to lead, the basal glutamate uptake was not changed. However, the L-trans-pyrollidine-2,4-dicarboxylic acid (PDC)-blocking effects was significantly reduced. In glial cells obtained from lead-exposed pups, the glutamate uptake was also less blocked by PDC than that in the control. Further decreases in PDC-blocking effects were observed in cerebellar glial cells obtained from lead-treated second generation pups compared to those from the control group. These results indicate that lead exposure induces the changes in the sensitivities of the glutamate release and uptake transporter. In addition, these results suggest that lead exposure might affect the intracellular signalling pathway and transmission in glutamatergic nervous system.

  • PDF

Subacute Nicotine Exposure in Cultured Cerebellar Cells Increased the Release and Uptake of Glutamate

  • Lim, Dong-Koo;Park, Sun-Hee;Choi, Woo-Jeoung
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.488-494
    • /
    • 2000
  • Cerebellar granule and glial cells prepared from 7 day-old rat pups were used to investigate the effects of sub-acute nicotine exposure on the glutamatergic nervous system. These cells were exposed to nicotine in various concentrations for 2 to 10 days in situ. Nicotine-exposure did not result in any changes in cerebellar granule and glial cell viability at concentrations of up to 500 $\mu\textrm{M}$. In cerebellar granule cells, the basal extracellular levels of glutamate, aspartate and glycine were enhanced in the nicotine-exposed granule cells. In addition, the responses of N-methyl-D-aspartate (NMDA)-induced glutamate release were enhanced at low NMDA concentrations in the nicotine-exposed granule cells. However, this decreased at higher NMDA concentrations. The glutaminase activity was increased after nicotine exposure. In cerebellar glial cells, glutamate uptake in the nicotine-exposed glial cells were either increased at low nicotine exposure levels or decreased at higher levels. The inhibition of glutamate uptake by L-trans-pyrollidine-2,4-dicarboxylic acid (PDC) was lower in glial cells exposed to 50 $\mu\textrm{M}$ nicotine. Glutamine synthetase activity was lower in glial cells exposed to 100 or 500 $\mu\textrm{M}$ of nicotine. These results indicate that the properties of cerebellar granule and glial cells may alter after subacute nicotine exposure. Furthermore, they suggest that nicotine exposure during development may modulate glutamatergic nervous activity.

  • PDF

Ultrastructural Changes in the Ganglion and Granule-Containing Cells in the Heart of Vacor-Induced Diabetic Mongolian Gerbil (Vacor 유발 당뇨 모래쥐의 심장신경절과 과립함유세포의 미세구조)

  • Kang, Jung-Chaee;Yoon, Jae-Rhyong;You, Hong-Seok
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.107-123
    • /
    • 1993
  • The ultrastructural changes of the cardiac ganglion and granule-containing cells in the heart of vacor-induced diabetic Mongolian gerbils were studied by electron microscopy. After one month of vacor-induced diabetes the ganglion cells showed increase in numbers of dense bodies and mitochondria compared with the normal cardiac ganglion. Most of the satellite cells were filled with numerous phagosomes containing digested debris. Both electron-dense and lucent types of degenerating axon terminals were observed. The former was characterized by clusters of agranular vesicles and numerous mitochondria. The electron lucent type of degenerating axon terminal contained a few agranular vesicles and swollen mitochondria. Degenerating unmyelinated and myelinated axons contained large numbers of dense bodies, lamellar bodies, and mitochondria. Numerous macrophages containing phagosomes were reveled in the interstitial spaces. Some of the granule-containing cells in the heart showed a variety of degenerative changes and a decreased number of dense-cored vesicles. After three months of vacor-induced diabetes the unmyelinated and myelinated axons showed degenerative changes, whereas no structure changes could be demonstrated in intraatrial ganglion and granule containing cells. The satellite cells containing engulfed debris were observed in the cardiac ganglion cells. These results suggest that the degenerative changes occur in the cardiac ganglion cells of vacor-induced diabetic Mongolian gerbils as well as atrial granule-containing cells.

  • PDF

Ultrastructural Study on the Parenchymal Cell of Korean Planaria (Dugesia japonica) (한국산 플라나리아(Dugesia japonica Ichikawa et Kawakatsu) 유조직의 미세구조에 관한 연구)

  • 장남섭
    • The Korean Journal of Zoology
    • /
    • v.30 no.1
    • /
    • pp.53-70
    • /
    • 1987
  • The morphological study on the parenchymal cells in the adult planaria performed to observe their cytochemical and ultrastructural characteristics. The results are as follows. Nine types of cells are found in parenchyma. 1. Free parenchymal cell: These cells contain several chromatoid bodies around the nucleus. Heterochromatins are evenly dispersed in large nucleus. These cells are abundant in free ribosomes. 2. Fixed parenchymal cells: These cells have well-developed granular endoplasmic reticulum, mitochondria and Golgi complex but they contain the cytosols exhibiting electron-lucencies. 3. Rhabdite-forming cells: These cells contain the electron-dense rhabdite granules of up to about 0.3 x 0.9 $\mu$m in size. Rhabdite-forming cells have well-developed cell organelles, granular endolplasmic reticulum, mitochondria and Golgy complex. 4. A-type of basophilic granule cells: These cells contain irregularly-shaped granules exhibiting alcianophilia. These granules surrounded by a limited membrane, approximately 1.4 x 0.7 $\mu$m in size, are accumulated in the cytoplasm. 5. C-type of basophilic granule cells: These cells contain electron-dense granules of less than 0.2 $\mu$m in size, which exhibit PAS- positive reaction. This type of granule is also found in the muscle layer of parenchyma. 6. D-type of basophilic granule cells: This type of granule cell occurs only in the parenchyma around reproductive organ. The granules have cytochemical characteristics that they exhibit strongly positive reaction with PAS and weakly eosinophilic property. These electron-dense granules, which are 0.2 to 0.6 $\mu$m in length, have oval shapes. 7. E-type of basophilic granule cells: These cells are found only in the parenchyma around re productive organ. The granules contained in a small number in the cell, exhibit PAS-positive reaction and have an average size of 0. 2pm. 8. Eosinophilic granule cells: These cells contain a large number of eosinophilic granules which have relatively diverse sizes from 0.3 x 0.2 to 0.8 x 0.4 $\mu$m. Most of granules are round or irregularly-shaped and highly electrondense. These cells have an array of well-developed granular endoplasmic reticulum of which cisternae are distened. 9. Transparent granule cells contain electron-lucent granules which exhibit negative reactions with three kinds of cytochemical methods used in this experiment.

  • PDF

Ultrastructural and Histochemical Studies on the Epithelial Cell of Korean Terrestrial Slug (Incilaria frubstorferi) (한국산 육생 민달팽이(Incilaria fruhstorferi)의 표피상피세포에 관한 미세구조 및 조직화학적 연구)

  • 장남섭;임연숙
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.93-106
    • /
    • 1989
  • The species of the slug used in this experiment is the Korean terrestrial slug (Incilaria fruhstorferi), which is examined for the cytochemical and ultrastructural research on the mucous granule-producing cells and the epithelial cells. I. Epidermal tissue According to the part of the epidermal tissue of this slug, the epidermal tissue is divided into the mantle, the foot and the dorsal epidermis. These epidennal tissue are composed of the irregular simple columnar epithelium, which are formed into the sensory epithelial cells, the supporting epithelial cells, the mucous granule-producing cells, and the clear epithelial cells are similar to the sensory epithelial cells. Both the sensory epithelial cells and the supporting epithelial cells are observed between the mantle and the foot epidermis, but the clear epithelial cells are only seen in the dorsal epidermis. II. Mucous granule-producing cell The acid mucous granule-producing cells and the neutral mucous granule producing cells are observed between the irregular simple columnar epithelium of the mantle, the foot and the dorsal epidermis. According to the part of the epidermal tissue, the number of these mucous granule-producing epithelial cells are differently distributed between the epidermis respectively.

  • PDF

Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses (인태아 상경신경절 발육에 관한 전자현미경적 연구)

  • Kim, Dae-Young;Kim, Baik-Yoon;Yoon, Jae-Rhyong
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.139-158
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length (10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule- containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest . The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and nay serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

Electron Microscopic Study on the Mast Cells of the Vertebrates(Mammals) Stomach (척추동물(脊椎動物)(포유류(哺乳類))위(胃)의 비만세포(肥滿細胞)에 관한 전자현미경적 연구)

  • Kang Ho-Suck;Kim Chang-Whan
    • Applied Microscopy
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 1981
  • An electron microscopical observation was carried out to compare the general shape of the mast cells and structures of granules inside the cells in the stomach of 5 species in 3 orders of Mammals. In convenience, the granules in the cytoplasm were abbreviated as follows: 1) Homogeneous granule, GR1 2) Particulate granule, GR2 a. Dark dense particulate granule, GR2-1 b. Less dense particulate granule, GR2-2 3) Reticular granule, GR5 a. Dark dense reticular granule, GR5-1 b. Light dense reticular granule, GR5-2 In Mammalia including goat, dog, cat, and hamster, most of cytoplasmic organelle were Golgi apparatus and mitochondria, and most of the cytoplasmic granules were highly densed GR1and GR2. However GR5-1 and GR5-2 appeared in guinea pig while one side sunken or crescent-like types occured in both dog and guinea pig. All mast cells were oval or spindle with cytoplasmic processes around the cell. There was also found vacuoles and vesicles in these cells. These results demonstrated that there was a morphological difference between species of vertebrate in the mast cells and their cytoplasmic granules. It was also suggested that a variety of structures of granules were closely related with the composition (histamine, heparin, serotonin, hyaluronic acid etc.) and mature of the granules.

  • PDF

Stress-induced Decrease of Granule Cell Proliferation in Adult Rat Hippocampus: Assessment of Granule Cell Proliferation Using High Doses of Bromodeoxyuridine Before and After Restraint Stress

  • Kim, Sung-Jin;Lee, Kuem-Ju;Shin, You-Chan;Choi, Song-hyen;Do, Eunju;Kim, Sangduk;Chun, Boe-Gwun;Lee, Min-Soo;Shin, Kyung-Ho
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2005
  • Stress is known to inhibit granule cell proliferation in the hippocampus. However, recent studies suggest that the commonly used dose of bromodeoxyuridine (BrdU) is insufficient to label all fractions of granule cells. Furthermore, stress-induced changes in BrdU availability may influence the labeling of newly born cells. To investigate whether changes in BrdU availability affect measurements of stress-induced granule cell proliferation, granule cell proliferation was assessed using injection of high doses of BrdU before and after restraint stress lasting 1 h. In addition, to determine whether stress-induced changes in plasma corticosterone levels were influenced by the BrdU, time-dependent changes in plasma corticosterone levels over 2 h after BrdU injection were compared with total accumulated plasma corticosterone levels [as determined by areas under the curve (AUC)]. Restraint stress significantly reduced the numbers of BrdU-labeled cells and clusters in the granule cell layer (GCL) of rats that received BrdU after stress, and decreases of similar magnitude were observed when the rats were given BrdU before stress. BrdU injection enhanced the stress-induced plasma corticosterone response, but there was no difference between the mean AUCs of plasma corticosterone levels of animals injected with BrdU before or after stress. These observations suggest that restraint stress decreases granule cell proliferation, and that this may be influenced by the extent and duration of plasma corticosterone increases rather than by changes in the availability of BrdU.