• 제목/요약/키워드: granulated blast-furnace slag

검색결과 446건 처리시간 0.026초

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.

An experimental investigation on the mechanical properties of steel fiber reinforced geopolymer concrete

  • Murali, Kallempudi;Meena, T.
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.499-505
    • /
    • 2021
  • Geopolymer binders fascinate the attention of researchers as a replacement to cement binder in conventional concrete. One-ton production of cement releases one ton of carbon-dioxide in the atmosphere. In the replacement of cement by geopolymer material, there are two advantages: one is the reduction of CO2 in the atmosphere, second is the utilization of Fly ash and Ground granulated blast furnace slag (GGBFS) are by-products from coal and steel industries. This paper focuses on the mechanical properties of steel fiber reinforced geopolymer concrete. The framework considered in this research work is geopolymer source (Fly ash, GGBFS and crimped steel fibre) and alkaline activator which consists of NaOH and Na2SiO3 of molarity 8M. Here the Na2SiO3 / NaOH ratio was taken as 2.5. The variables considered in this experimental work include Binder content (360,420 and 450 kg/m3), the proportion of Fly ash and GGBS (70-30, 60-40 and 50-50) for three different grades of Geopolymer concrete (GPC) GPC 20, GPC 40 and GPC 60. The percentage of crimped steel fibres was varied as 0.1%, 0.2%, 0.3%, 0.4% and 0.5%. Generally, the inclusion of steel fibres increases the flexural and split tensile strength of Geopolymer concrete. The optimum dosage of steel fibres was found to be 0.4% (by volume fraction).

Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete

  • Moon, Jiho;Youm, Kwang Soo;Lee, Jong-Sub;Yun, Tae Sup
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.389-401
    • /
    • 2022
  • This study investigated the flowability and mechanical properties of cost-effective steel fiber reinforced ultra-high performance concrete (UHPC) by using locally available materials for field-cast application. To examine the effect of mixture constituents, five mixtures with different fractions of silica fume, silica powder, ground granulated blast furnace slag (GGBS), silica sand, and crushed natural sand were proportionally prepared. Comprehensive experiments for different mixture designs were conducted to evaluate the fresh- and hardened-state properties of self-consolidating UHPC. The results showed that the proposed UHPC had similar mechanical properties compared with conventional UHPC while the flow retention over time was enhanced so that the field-cast application seemed appropriately cost-effective. The self-consolidating UHPC with high flowability and low viscosity takes less total mixing time than conventional UHPC up to 6.7 times. The X-ray computed tomographic imaging was performed to investigate the steel fiber distribution inside the UHPC by visualizing the spatial distribution of steel fibers well. Finally, the tensile stress-strain curve for the proposed UHPC was proposed for the implementation to the structural analysis and design.

Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers

  • Karimpour, Hossein;Mazloom, Moosa
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.575-589
    • /
    • 2022
  • In order to enhance the greenness in the strain-hardening composites and to reduce the high cost of typical polyvinyl alcohol fiber reinforced engineered cementitious composite (PVA-ECC), an affordable strain-hardening composite with green binder content has been proposed. For optimizing the strain-hardening behavior of cementitious composites, this paper investigates the effects of polypropylene fibers on the first cracking strength, fracture properties, and micromechanical parameters of cementitious composites. For this purpose, digital image correlation (DIC) technique was utilized to monitor crack propagation. In addition, to have an in-depth understanding of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. To understand the effect of fibers on the strain hardening behavior of cementitious composites, ten mixes were designed with the variables of fiber length and volume. To investigate the micromechanical parameters from fracture tests on notched beam specimens, a novel technique has been suggested. In this regard, mechanical and fracture tests were carried out, and the results have been discussed utilizing both fracture and micromechanical concepts. This study shows that the fiber length and volume have optimal values; therefore, using fibers without considering the optimal values has negative effects on the strain-hardening behavior of cementitious composites.

DEVELOPMENT OF SUSTAINABLE CEMENTLESS MORTARS

  • Keun-Hyeok Yang;Seol Lee;Sang-Ho Nam
    • International conference on construction engineering and project management
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1630-1636
    • /
    • 2009
  • Nine alkali-activated (AA) mortars were mixed and cured at water or air-dried conditions to explore the significance and limitation for the application of the combination of Ba and Ca ions as an alkali-activator. Ground granulated blast-furnace slag (GGBS) was used for source materials, and calcium hydroxide (Ca(OH)2) and barium hydroxide (Ba(OH)2) were employed as alkali activators. Test results clearly showed that the water curing condition was more effective than the air-dried curing condition for the formation of the denser calcium silicate hydrate (C-S-H) gels that had a higher molar Si/Ca ratio, resulting in a higher strength development. At the same time, the introduction of Ba(OH)2 led to the formation of 2CaO·Al2O3·SiO2·8H2O (C2ASH8) hydrates with higher molar Si/Al and Ca/Al ratios. Based on the test results, it can be concluded that the developed cementless mortars have highly effective performance and high potential as an eco-friendly sustainable building material.

  • PDF

Compressive Strength Properties Surface Coating Lightweight Aggregate ITZ using Inorganic Materials (무기 재료를 이용한 표면코팅 경량골재 계면 압축강도 특성)

  • Kim, Ho-Jin;Jeong, Su-Mi;Pyeon, Myeong-Jang;Kim, Ju-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.109-110
    • /
    • 2022
  • Recently, it tend to increase the high-rise and large-scale of buildings and the developtment of construction technology can to be applied reinforced concrete structures to high-rise buildings. However, when a high-rise buildings is constructed with reinforced concrete, it has a disadvantage that buildings weight increases. In order to resolve the weight of reinforced concrete structures, various types of lightweight aggregates become development and research. Although lightweight aggregates can be reduced the weight of concrete, the strength of ITZ(Interfacial Transition Zone) is lowered due to its less strength than natural aggregates. In this study, an experimental study was conducted to coat the surface of lightweight aggregates with GGBFS(ground granulated blast furnace slag) to improve the strength of cement matrix mixed with lightweight aggregates. Result of this experimental study shows that the compressive strnegth of the surface coating lightweight aggregates was higher than general lightweight aggregates. Also, it was considered that this is because the pore at the ITZ of the surface-coated lightweight aggregates mixed cement matrix are filled with GGBFS fine particle.

  • PDF

A Sustainable Concrete for Airfield Rigid Pavements (공항 활주로 포장용 친환경 콘크리트의 활용 방법)

  • Salas-Montoya, Andres;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.23-24
    • /
    • 2021
  • The use of recycled concrete aggregates (RCA) as a substitute for natural aggregates in new concrete produces both economic and environmental advantages. Most of the RCA applications for pavements have been primarily applied to support layers for roads and airfields. This paper summarizes a work completed at the University of Illinois in partnership with the O'Hare Modernization Program to examine the effect of coarse and fine RCA on the concrete's fresh and hardened properties for airfield rigid pavement applications. Ten different RCA concrete mixtures were prepared with the incorporation of different percentages of RCA fines as well as replacement of cement with high volume percentages of supplementary cementitious materials such as Class C fly ash and ground granulated blast furnace slag to improve the workability and long-term properties of RCA concrete. All the mixes on this stage included 100% recycled coarse aggregates and the Two-Stage Mixing Approach was used as a mixing procedure. Based on the results obtained in the research, mixes with high percentages of recycled fine and coarse aggregates could be used for construction of airfield concrete pavements in conjunction with supplementary cementitious materials

  • PDF

Waste Glass as an Activator in Class-C fly Ash/GGBS based Alkali Activated Material

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.77-78
    • /
    • 2020
  • An alkaline activator was synthesized by dissolving waste glass powder (WGP) in NaOH-4M solution to explore its effects on the Class-C fly ash (FA) and ground granulated blast furnace slag (GGBS) based alkali-activated material (AAM). The compressive strength and porosity were measured, and (SEM-EDX) were used to study the hydration mechanism and microstructure. Results indicated that the composition of alkali solutions was significant in enhancing the properties of the obtained AAM. As the amount of dissolved WGP increased in alkaline solution, the silicon concentration increased, causing the accelerated reactivity of FA/GGBS to develop Ca-based hydrate gel as the main reaction product in the system, thereby increasing the strength. Further increase in WGP dissolution led to strength loss, which were believed to be due to the excessive water demand of FA/GGBS composites to achieve optimum mixing consistency. Increasing the GGBS proportion in a composite also appeared to improve the strength which contributed to develop C-S-H-type hydration.

  • PDF

A Strength on the Properties of Non-Cement Mortar containing Rice Husk Powder extracted from Digestion (증해 추출 왕겨 분말을 혼입한 무시멘트 모르타르의 강도 특성)

  • Cho, Sung-Eun;Cho, Sung-Won;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.225-226
    • /
    • 2021
  • Recently, environmental problems have emerged as a major issue all over the world due to an increase in carbon dioxide(CO2). The amount of CO2 generated during cement production accounts for 6% to 8% of domestic CO2 emissions and a solution to reduce CO2 emissions the construction industry is trying to use mineral admixtures to reduce cement. Since digestion has no firing process the advantage of it is that there is no air pollution to occur. In this study, we studied the compressive strength of binary non-cement mortar containing rice husk powder extracted from digestion by the ratio of 10%, 20%, 30%, 40%. As a result, the table flow was increased when the mixing rate of rice husk powder extracted from digestion was higher, and the highest compressive strength was shown when the rice husk powder extracted from digestion mixing rate was 10%.

  • PDF

Use of waste glass as an aggregate in GGBS based alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Son, Min Jae;Pyeon, Su Jeong;Suh, Dong Kyun;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.21-22
    • /
    • 2021
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in ground granulated blast furnace slag (GGBS) based alkali activated mortar (AAm). Tests were conducted on the AAm to determine the mechanical properties, apparent porosity and the durability based on its resistance to Na2SO4 5% and H2SO4 2% concentrated solutions. The study revealed that increasing GS up to 100 wt%, increased strength and decreased porosity. The lower porosity attained with the incorporation of GS, improved the resistance of mortar to Na2SO4 and thus increasing durability. However, the durability of mortar to H2SO4 solution was negatively impacted with the further reduction of porosity observed with increasing GS above 50 wt.% believed to be caused by the stress induced as a result of expansive reaction products created when the mortar reacted with acid.

  • PDF