• Title/Summary/Keyword: granular media

Search Result 83, Processing Time 0.028 seconds

Evaluation of continuous cultivation of anaerobic ammonium oxidation bacteria immobilized on synthetic media and granular form (입상형태와 합성담체에 고정화된 혐기성 암모늄 산화균의 연속배양 특성 평가)

  • Kim, Jiyoung;Yun, Wonsang;Jung, Jinyoung;Choi, Daehee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • The activity of anaerobic ammonium oxidation (ANAMMOX) immobilized in synthetic media (Poly Ethylene Glycol, PEG) and granular form was evaluated comparatively to investigate the effect of influent nitrogen concentration and exposure of oxygen. In ANAMMOX granule reactor, when concentration of influent total nitrogen increased to 500mg/L, removal efficiency of ammonium, nitrite and nitrate were shown to 90.5±6.5, 96.6±4.9, and 93.2±6.1%, respectively. In the case of the PEG gel, it showed lower nitrogen removal performance, resulting in that the removal efficiency of ammonium, nitrite and nitrate were shown to 83.3±13.0, 96.4±6.1, and 90.3±7.5%, respectively. In second step, when exposed to oxygen, the nitrogen removal performance in the ANAMMOX granule reactor also remained stable, but the activity of PEG gel ANAMMOX was found to be inhibited. Consequently, the PEG gel ANAMMOX was a higher sensitivity than that of granular ANAMMOX with two variables applied in this study.

Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator (필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교)

  • Bang, Ki-Woong;Lee, Jun-Ho;Choi, Chang-Su;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.332-340
    • /
    • 2007
  • Storm runoff from road contains significant loads of particulate and dissolved solids, organic constituents and metal elements. Micro particle is important when considering pollution mitigation because pollutant metal and organics have similar behavior with particles. The objective of this research is to evaluate the hydrodynamic filter separator performance for road storm runoff treatment. A various types of media such as perlite, granular activated carbon, zeolite were used for column test packing media and filter separator, and to determine the removal efficiency with various surface loading rate. As the results of column test, the highest SS removal efficiency was using mixed media(granular activated carbon, zeolite and perlite), and granular activated carbon mixed with zeolite has higher heavy metal removal efficiency than perlite. In laboratory scale hydrodynamic filter separator study, the operation ranges of surface loading rates were from 192 to 1,469 $m^3/m^2/day$. The estimated overall removal efficiencies of hydrodynamic filter separator for typical storm runoff were SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, and TP 17.3%, respectively. For the case of heavy metals, overall removal efficiencies were Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, and Pb 15.0%, respectively. The most appropriate medium for hydrodynamic filter separator was perlite mixed with granular activated carbon to treatment of road storm runoff.

A New Scanning Method for MPEG-4 AVC based Fine Granular Scalable Video Coding (MPEG-4 AVC 기반 미세입자 스케일러블 비디오 코딩을 위한 새로운 스캔 방법)

  • 정원식;박광훈;김규헌
    • Journal of Broadcast Engineering
    • /
    • v.7 no.4
    • /
    • pp.345-354
    • /
    • 2002
  • In this paper, we introduce a new scanning method for MPEG-4 AVC based Fine Granular Scalable video coding that can significantly improve the subjective picture quality of a decoded scalable video. The proposed scanning method can guarantee the subjectively improved picture qualify of the decoded scalable video by encoding, transmitting and decoding the visually important region most-preferentially. From the simulation results, it has been found that the proposed scanning method can lead the FGS method to achieve significantly improved picture quality, especially on the region of interests.

Microbial Removal Using Layered Double Hydroxides and Iron (Hydr)oxides Immobilized on Granular Media

  • Park, Jeong-Ann;Lee, Chang-Gu;Park, Seong-Jik;Kim, Jae-Hyeon;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.149-156
    • /
    • 2010
  • The objective of this study was to investigate microbial removal using layered double hydroxides (LDHs) and iron (hydr)oxides (IHs) immobilized onto granular media. Column experiments were performed using calcium alginate beads (CA beads), LDHs entrapped in CA beads (LDH beads), quartz sand (QS), iron hydroxide-coated sand (IHCS) and hematite-coated sand (HCS). Microbial breakthrough curves were obtained by monitoring the effluent, with the percentage of microbial removal and collector efficiency then quantified from these curves. The results showed that the LDH beads were ineffective for the removal of the negatively-charged microbes (27.7% at 1 mM solution), even though the positively-charged LDHs were contained on the beads. The above could be related to the immobilization method, where LDH powders were immobilized inside CA beads with nano-sized pores (about 10 nm); therefore, micro-sized microbes (E. coli = 1.21 ${\mu}m$) could not diffuse through the pores to come into contact with the LDHs in the beads, but adhere only to the exterior surface of the beads via polymeric interaction. IHCS was the most effective in the microbial removal (86.0% at 1 mM solution), which could be attributed to the iron hydroxide coated onto the exterior surface of QS had a positive surface charge and, therefore, effectively attracted the negatively-charged microbes via electrostatic interactions. Meanwhile, HCS was far less effective (35.6% at 1 mM solution) than IHCS because the hematite coated onto the external surface of QS is a crystallized iron oxide with a negative surface charge. This study has helped to improve our knowledge on the potential application of functional granular media for microbial removal.

A comparative study of granular activated carbon and sand as water filtration media with estimation of model parameters

  • Chatterjee, Jaideep;A, Shajahan;Pratap, Shailendra;Gupta, Santosh Kumar
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.35-51
    • /
    • 2017
  • The use of Granular Activated Carbon (GAC) and naturally occurring silica (Sand) as filtration media in water and waste water treatment systems is very common. While GAC offers the additional functionality of being an "adsorptive" filter for dissolved organics it is also more expensive. In this paper we present an experimental evaluation of the performance of a bed of GAC for colloid removal and compare the same with that from an equivalent bed of Sand. The experiments are performed in an "intermittent" manner over extended time, to "simulate" performance over the life of the filter bed. The experiments were continued till a significant drop in water flow rate through the bed was observed. A novel "deposition" and "detachment" rate based transient mathematical model is developed. It is observed that the data from the experiments can be explained by the above model, for different aqueous phase electrolyte concentrations. The model "parameters", namely the "deposition" and "detachment" rates are evaluated for the 2 filter media studied. The model suggests that the significantly better performance of GAC in colloid filtration is probably due to significantly lower detachment of colloids from the same. While the "deposition" rates are higher for GAC, the "detachment" rates are significantly lower, which makes GAC more effective than sand for colloid removal by over an order of magnitude.

Filtration performance of granular ceramic filters produced at various molding pressures (다양한 성형압력조건에서 제조된 입상 세라믹필터의 집진성능)

  • Hyun-Jin Choi;Han-Bin Kim;Myong-Hwa Lee
    • Particle and aerosol research
    • /
    • v.20 no.2
    • /
    • pp.57-68
    • /
    • 2024
  • A silicon carbide (SiC) ceramic filter is an effective component for hot flue gas cleaning because of its high collection efficiency, high thermal shock resistance, and excellent mechanical strength. The effect of molding pressure in the production of SiC granular ceramic filters, on the mechanical strength and filtration performance, was investigated in this work. It was found that the ceramic filters produced at molding pressures less than 20 MPa have low mechanical strength and that this result was caused by weak physical interaction among the ceramic powders due to defects and cracks. On the other hand, the filter quality factor(qF), which represents filtration performance of filter media, decreased with increasing the molding pressure due to the drastic increase in pressure drop. Ceramic filter performance factor(qFM), which is the manipulation of maximum mechanical strength and qF, was introduced to consider both mechanical strength and filtration performance in this study. As a result, molding pressure of 30 MPa was desirable to produce a SiC granular ceramic filter based on qFM.

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.

Studies on the sterilizing effect of the silver ion. (은 이온의 항균작용에 관한 연구)

  • 김덕묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.3
    • /
    • pp.26-29
    • /
    • 1987
  • The physical and chemical characteristics of bacteriostatic water filter media are compared to granular activated carbon upon which a silver impregnated. Silver ion that has been chemically impregnated the activated carbon was the bactericidal agent in water filter media. Also, silver Ion that has teen chemically impregnated onto the activated acetate resin was the bactericidal agent in ultrasonic humidifier. Silver impregnated active carbon and silver cartridge will be able to the bactericidal agents for statical water.

  • PDF

Growth of Plug Seedlings of Petunia 'Madness Rose' and Pansy 'Magestic GT' in Various Mixtures of Recycled Horticultural Media (원예용 폐배지를 재활용한 혼합배지에서 페튜니아와 팬지 플러그묘의 생육)

  • Shin, Woo Gun;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.18 no.4
    • /
    • pp.523-528
    • /
    • 2000
  • Plug seedlings of Petunia hybrida 'Madness Rose' and Viola tricolor 'Magestic GT' were cultured in media containing various volume ratios of recycled plug medium, recycled coir, perlite, granular rockwool, and vermiculite for 36 and 43 days after sowing, respectively. Recycled plug medium and recycled coir were steam pasteurized for 30 minutes at $120^{\circ}C$ and 1.5 atmosphere. An unused commercial plug medium (Tosilee, pH 5.10, EC $0.12mS{\cdot}cm^{-1}$ at 1:5 dilution, v/v, Shinan Grow Co.) was used as the control. The pH of different media before and after growing seedlings was similar. Medium EC was high when recycled plug medium was included. Recycled coir (75%)+vermiculite (25%) mixture also had high medium EC. However, medium EC was low when granular rockwool or perlite was included. Height, root formation, shoot dry weight and leaf count (ea) of petunia, and height, total fresh and dry weights, and shoot fresh and root dry weights of pansy were the highest in recycled coir (75%)+perlite (25%) mixture. Recycled coir was better than recycled plug medium in physicochemical properties, and also in resultant plant growth. It is recommended to include perlite or granular rockwool when plug media including recycled horticultural media are prepared.

  • PDF