• Title/Summary/Keyword: granular filtration

Search Result 58, Processing Time 0.022 seconds

Study on Removal of Cesium in Water Treatment System (물속의 방사성핵종(세슘) 제거율 연구)

  • Jeong, Gwanjo;Son, Boyoung;Ahn, Chihwa;Lee, Suwon;Ahn, Jaechan;Kim, Bogsoon;Chung, Deukmo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • This study investigated the removal of a radioactive cesium ($Cs^+$) in the water at the water treatment processes. Since cesium is mostly present as the $Cs^+$ ion state in water, it is not removed by sand filtration, and coagulation with polyaluminum chloride (PACl), powdered activated carbon (PAC) and mixture of PACl and PAC. However, it is known that the removal rate of cesium increases as the turbidity increases in raw water. As the turbidity was adjusted by 74 NTU and 103 NTU using the surrounding solids near G-water intake and yellow soils, removal rate of cesium was about 56% and 51%, respectively. In case of a GAC filtration with supernatants after jar-mixing/setting was conducted, 80% of cesium is approximately eliminated. The experimental results show that it is efficient to get rid of cesium when the turbidity of the raw water is more than 80 NTU. In case of a GAC filtration, about 60% of cesium is removed and it is considered by the effect of adsorption. Cesium is not eliminated by microfiltration membrane while about 75% of cesium is removed by reverse osmosis.

Design and operating parameters of multi-functional floating island determined by basic experiments of unit processes (단위공정별 기초실험을 통한 다기능 융복합부도의 설계·운전인자 도출)

  • Lim, Hyun-Man;Jang, Yeo-Ju;Jung, Jin-Hong;Yoon, Young-Han;Park, Jae-Roh;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.487-497
    • /
    • 2018
  • Water quality improvement processes for stagnant area consist mainly of technologies applying vegetation and artificial water circulation, and these existing technologies have some limits to handle pollution loads effectively. To improve the purification efficiency, eco-friendly technologies should be developed that can reinforce self-purification functions. In this study, a multi-functional floating island combined with physical chemical biological functions ((1) flotation and oxidization using microbubbles, (2) vegetation purification and (3) bio-filtration with improved adsorption capacity) has been developed and basic experiments were performed to determine the optimal combination conditions for each unit process. It has been shown that it is desirable to operate the microbubble unit process under conditions greater than $3.5kgf/cm^2$. In vegetation purification unit process, Yellow Iris (Iris pseudacorus) was suggested to be suitable considering water quality, landscape improvement and maintenance. When granular red-mud was applied to the bio-filtration unit process, it was found that T-P removal efficiency was good and its value was also stable for various linear velocity conditions. The appropriate thickness of filter media was suggested between 30 and 45 cm. In this study, the optimal design and operating parameters of the multi-functional floating island have been presented based on the results of the basic experiments of each unit process.

Study on Removal of Artificial Radionuclide (I-131) in Water (물속의 인공방사성핵종(I-131) 제거율 연구)

  • Jeong, Gwanjo;Lee, Kyungwoo;Kim, Bogsoon;Lee, Suwon;Lee, Jonggyu;Koo, Ami
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.747-752
    • /
    • 2014
  • Iodine-131, an artificial radionuclide, mostly exists as iodide ion ($^{131}I^-$) and iodate ion ($^{131}IO_3{^-}$) in the water, and When a short time contacted, it could not be removed by poly aluminum chloride (PACl) and powdered activated carbon (PAC). Although the removal rate of iodine-131 was not related with turbidity of raw water, it showed linear relationship with contact time with PAC. With the mixture of PACl (24 mg/L or more) and PAC (40 mg/L or more), about 40% of iodine-131 could be removed. Iodine-131 could be removed little by sand filtration, but approximately 100% by granular activated carbon (GAC), both virgin-GAC and spent-GAC. Microfiltration process could remove little iodine-131 while reverse osmosis process could remove about 92% of iodine-131.

A Study of the Regeneration of Spent GAC using an Electrochemical Method (전기화학적 방법을 이용한 Spent Granular Activated Carbon (GAC)의 재생 연구)

  • Lee, Sangmin;Joo, Soobin;Jo, Youngsoo;Oh, Yeji;Kim, Hyungjun;Shim, Intae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.481-491
    • /
    • 2022
  • This study investigates the characteristics of the GAC adsorption behavior during the operation of a multi-stage cross-flow filtration and GAC adsorption process for the purpose of devising an advanced treatment of combined sewer overflows (CSOs) and evaluates the regeneration efficiency of spent GAC that has reached the design breakpoint. During the filtration process, suspended substances are easily removed, but dissolved organic substances are not removed, necessitating a process capable of removing dissolved organic substances for the advanced treatment of CSOs. In general, GAC adsorption has been applied under low-concentration organic conditions, such as for water purification and tertiary treatments of sewage, and has rarely been applied under conditions with high organic concentrations, such as with sewage or CSOs. Accordingly, this study will provide a new and interesting experience. Also in this study, the continuous operation and breakthrough characteristics of GAC according to the strength of the inflow organic matter were investigated, electrochemical regeneration was applied to the used GAC, and the regeneration efficiency was evaluated through desorption and re-adsorption tests. The results showed that the breakthrough period was 21 days under high concentration conditions, 28 days at medium concentrations, and 32 days under low concentration conditions. The desorption of adsorbed organic matter through electrolysis occurred in the range of 188 to 609 mgCOD/L depending on the electrolysis conditions, and the effect of the electrolyte type led to the finding that NaOH was slightly higher than H2O2.

Feasibility Tests for Treating Fine Suspended Solids from Mining Drainage, using Various Media by Column Methods - A Case from H Coal Mine (광산배수 부유물질 저감을 위한 다양한 여과 매질의 특성 및 적용성 평가 - H 석탄광산 배수)

  • Lee, Sanghoon;Kwon, HyukHyun;Oh, Minah;Lee, Jai-Young;Kim, DukMin
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.112-118
    • /
    • 2012
  • Fine suspended solids from mine drainage draw attentions due to their potential adverse influences on the water quality, such as increasing turbidity and degrading aesthetic landscape. Currently, sand filter beds are adapted in some mine drainage treating systems. However, more efficient system is in demand, as the existing sand beds reveal some problems, such as frequent maintenance intervals. Various filtering mediums including fly ash, mine tailing aggregates and the sand were tested for improving the current system, using column experimental set-up. Mine drainage samples were collected from the current treating systems in the abandoned H coal mine. The experiment was run for 7 days. Suspended solids recorded as 100.9 mg/L and the value exceeds the current standard, 30 mg/L. Sand was proved to still be the optimum medium for the fine suspended solids, compared to fly ash and fly ash + sand. Mine tailing aggregates were placed at the exit of the columns, substituting gravels. The tailing aggregates is made by mine tailings and clay. Sand bed filters can also be improved by mixing granular activated carbon, which was found to be economical and efficient in the batch experiment, conducted at the same time.

Removal of Fine Suspended Solids and Soluble Heavy Metals in H Mine Drainage using Settling and Filtering : Field Application (침전 및 여과를 통한 H 광산배수 내 미세부유물질 및 용해성 중금속의 제거 : 현장실험을 중심으로)

  • Oh, Minah;Kim, WonKi;Oh, Seungjin;Kim, DukMin;Lee, SangHoon;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.54-62
    • /
    • 2013
  • Fine suspended solids and soluble heavy metals generated from mine drainage could destroy environment as the aesthetic landscapes, and depreciate water quality. Therefore, this research is focused on process development applied the actual field for controlling fine suspended solids and heavy metals, and so that bench-scale tests were performed for field application based on advanced researches. The field of mine drainage in this research was in H mine located Taebaek-si, Gangwon-do. The inclination plates were mounted 2 kinds of arrangement (octagon and radial types) in circle type settling basin. The inclination plates could be helped to settle of suspended solids; decreased 34% of suspended solids and 50% of turbidity in effluent. Radial type of inclination plates showed the results that is more efficient to settle of suspended solids (average to 3.45 mg/L) compared to octagon type. In the experiments to decrease retention time of mine drainage in settling basin from 6 hrs to 1.5 hrs, suspended solid concentration was exceeded to 30 mg/L as the standard for suspended solid at 10 days after the operation under tha retention time of 3hrs and 1.5hrs. In the tests for filtration, granular activated carbons were indicated the better effective to filtering and absorption of fine suspended solid and soluble heavy metals than anthracite.

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

Physicochemical Properties of Several Korean Yam Starches (한국산 마전분의 이화학적 특성)

  • Kim, Wha-Sun;Kim, Sang-Soon;Park, Yong-Kon;Seog, Ho-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.554-560
    • /
    • 1991
  • The physicochemical properties of Korean yam starches (D. aimadoimo, D. batatas and D. japonica) were investigated. The mean granular size of starches were 23.5 μm for D. aimadoimo, 23.9 μm for D. batatas and 18.2 μm for D. japonica. Amylose content, blue value and water binding capacity was $29{\sim}33%,\;0.42{\sim}0.51%\;and\;109.9{\sim}118.3%$, respectively. The optical transmittance of 0.3% (dry basis) yam starch suspensions were increased at $70{\sim}75^{\circ}C$ and D. japonica showed typical two-step transmittance curve. The swelling power and solubility patterns increased over $60^{\circ}C$, and D. aimadoimo was the highest values. Amylogram patterns of 5% (dry basis) yam starch suspensions, determined by Brabender amylograph, were similar to that of yam flours and the viscosity of D. aimadoimo had 630 BU, which was about 5 times higher than 130 BU for D. batatas and D. japonica. Observation under scanning electron microscope lefted marks of resistance to glucoamylase because these surfaces were similar to the natural granules. In rates of solubiliazation by dimethyl sulfoxide, D. aimadoimo showed the highest value. (3-Amylolysis limits of yam starches and their amylose were $71.8%{\sim}75.5%\;and\;90.2{\sim}92.1%$, respectively. Gel filtration patterns of debranched amylopectin by pullulanase were divided into 3 peaks. The weight ratios of peak III to peak II in yam starches were $2.15%{\sim}2.42%$.

  • PDF