• 제목/요약/키워드: granular activated carbon

검색결과 249건 처리시간 0.021초

은나노 활성탄에 의한 하수 2차 처리수 중의 오염물질 제거 특성에 관한 연구 (A Study on the Characteristics of Pollutant Removal in Secondary Effluent from Wastewater Treatment Plant Using Silver Nanoparticles on Activated Carbon)

  • 선용호
    • KSBB Journal
    • /
    • 제29권5호
    • /
    • pp.353-360
    • /
    • 2014
  • This study targets the pollutant removal of secondary effluent from final clarifiers in wastewater treatment plant using silver nanoparticles on activated carbon. The removal efficiency and treatment characteristics of pollutant are anlayzed by perfoming experiments using granular activated carbon with silver nanoparticles and ordinary granular activated carbon. The specific surface area of granular activated carbon with silver nanoparticles is smaller than that of ordinary granular activated carbon. However, the removal efficiency of $COD_{Mn}$, T-N and T-P in experiments using activated carbon with silver nanoparticles are higher than that in experiment using ordinary granular activated carbon. That means the case of activated carbon with silver nanoparticles is much better at treatment activity. In addition, activated carbon with silver nanoparticles has antimicrobial activity because there is no microbe on the surface of it after experiments.

활성탄에 의한 PCBs의 흡착제거 (Adsoption Removal of PCBs by Activated Carbon)

  • 유용호;이종집
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.59-64
    • /
    • 2006
  • In this study, adsorption characteristics of PCBs on granular activated carbon were experimentally investigated in a batch reactor and in a fixed bed reactor. Granular activated carbon removed above 98.4% of initial concentration, 1000mg/L, of PCBs. It was estabilished that the adsorption equilibrium of PCBs on granular activated carbon was more successfully fitted by Freundlich isotherm equation in the concentration range from 1 to 1000mg/L. Because Freundlich parameter, ${\beta}$ is 0.346, removall treatment of PCBs by activated carbon accounts for the fact that toxicity reduction can be achieved through this process. Appearance time of breakthrough curve is faster with the increase flow rate and inflow concentration of liquid. The utility of granular activated carbon is enhanced with the increase of bed height and with the decrease of inflow rate.

입상활성탄 공정의 진단 및 효율적 운영방안: D 정수장을 중심으로 (Assessment and Optimization of Granular Activated Carbon (GAC) Process in Water Treatment Process)

  • 김성수;이경혁
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.781-790
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. Many of the problems occurring in the GAC process are associated with the operation goal and performance. The purpose of this study were to evaluate the design, operation, and performance of granular activated carbon process in D water treatment plant. The optimal operation conditions of GAC process such as backwashing condition, granular activated carbon replacement time were discussed. The design, operation and performance of GAC process is influenced by their raw water characteristics and placement within the treatment process sequence. A critical analysis of plants experience and the information from the literature identifies the effectiveness of GAC process and indicates where modifications in design and operation could lead to improved performance. It would be useful to evaluate and optimize the GAC process in other treatment plant.

수용액중 납이온 제거를 위한 활성슬러지의 이용가능성에 관한 연구 (A Study on the Availability of Activated Sludge for the $Pb^{2+}$ Removal in Aqueous Solution)

  • 김동석;서정호
    • 한국환경과학회지
    • /
    • 제7권5호
    • /
    • pp.697-705
    • /
    • 1998
  • $Pb^{2+}$ removal capacity and initial $Pb^{2+}$ removal rate were compared between non-biomaterials (granular activated carbon, powdered activated carbon, ion exchange resin, zeolite) and biomaterials (activated sludge, Aureobasidium pullulans, Saccharomyces cerevisiae). The $Pb^{2+}$ removal capacity of biomaterials were greater than that of non-biomaterials, generally. The $Pb^{2+}$ removal capacities of non-biomaterials and biomaterials were shown on the order of ion exchange resin > zeolite > granular activated carbon > powdered activated carbon and A. pullulans > S. cerevisiae > activated sludge, respectively. In the initial $Pb^{2+}$ removal rate, the non-biomaterials showed powdered activated carbon > granular activated carbon > zeolite > ion exchange resin and the biomaterials showed A. pullulans > activated sludge > S. cerevisiae. Comparing the $Pb^{2+}$ removal capacity and initial $Pb^{2+}$ removal rate of activated sludge with those of other non-biomaterials and biomaterials, activated sludge may have an availability on the removal of heavy metal ions by the economical and pratical aspects.

  • PDF

액상 유기오염물질에 대한 폐커피가루의 흡착능력 평가 (Evaluation of the adsorptive capacity of spent coffee powder for the removal of aqueous organic pollutants)

  • 김슬기;나승민;손영규
    • 한국습지학회지
    • /
    • 제18권1호
    • /
    • pp.39-44
    • /
    • 2016
  • 최근 커피 이용량이 증가하면서 폐커피가루의 활용에 대한 관심이 환경공학 분야에서 높아지고 있다. 본 연구에서는 폐커피가루를 재활용하여 오염물질에 대한 흡착제로서의 사용 가능성을 평가하기 위하여 액상의 유기 오염물질(메틸렌 블루)에 대한 흡착평형실험 및 흡착속도실험을 수행하였고, 입상활성탄 및 분말활성탄을 이용한 실험결과와 비교하였다. 실험 결과, 흡착평형의 경우 세 종류의 흡착제 모두 Langmuir 식에 잘 맞는 것으로 확인되었으며, 최대흡착량은 분말활성탄(178.6 mg/g), 폐커피가루(60.6 mg/g), 입상활성탄(15.6 mg/g) 순으로 확인되었다. 흡착속도실험에서도 유사 1차식 및 유사 2차식 모두에서 폐커피가루가 입상활성탄보다 우수한 것으로 확인되었다. 이는 폐커피가루의 입자 크기가 입상활성탄보다 작으며 표면이 입상 및 분말활성탄과 같이 다공성 특성을 띄고 있기 때문인 것으로 판단되었다.

활성탄 물성에 따른 인 흡착의 동력학적 연구 (A Kinetic Study on the Phosphorus Adsorption by Physical Properties of Activated Carbon)

  • 서정범;강준원
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.491-496
    • /
    • 2010
  • This study aimed to obtain equilibrium concentration on adsorption removal of phosphorus by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical properties of activated carbon and dynamics of phosphorus removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. Phosphorus adsorption equilibrium reaching time of powdered activated carbon was reduced as the dosage of activated carbon increases, while granular activated carbon despite increased dosage did not have influence on adsorption equilibrium reaching times of phosphorus as well, taking more than 10 hours. It was also noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon on phosphorus was 4.26 which is bigger than those of granular activated carbon. The adsorption rate constant on phosphorus of powered activated carbon with low effective diameter and iodine number was highest as $8.888hr^{-1}$ and the effective pore diffusivity ($D_e$) was lowest as $2.45{\times}10^{-5}cm^2/hr$, and the value of phosphorus adsorption rate constant of granular activated carbon was $0.174{\sim}0.372hr^{-1}$, It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter was better and its rate constant was also high.

음이온교환수지와 활성탄을 이용한 산업 폐수 중 셀레늄의 흡착 (Adsorption of Selenium in Industrial Wastewater Using Anion Exchange Resin and Activated Carbon)

  • 한상욱;박진도;이학성
    • 한국환경과학회지
    • /
    • 제18권12호
    • /
    • pp.1411-1416
    • /
    • 2009
  • Several adsorbents were tried to remove the selenium ions from industrial wastewater and the following ascending order of the adsorption performance for the selenium at pH 9 was observed: cation exchange resin < chelate resin < zeolite < brown marine algae < granular activated carbon < anion exchange resin. Initial concentration of selenium(146 mg/L) in industrial wastewater was reduced to 63 mg/L of selenium at pH 9 by neutralization process. The maximum uptake of Se calculated from the Langmuir isotherm with anion exchange resin was 0.091 mmol/g at pH 10 and that with granular activated carbon was 0.083 mmol/g at pH 6. The affinity coefficients of Se ion towards anion exchange resin and granular activated carbon were 3.263 L/mmol at pH 10 and 0.873 L/mmol at pH 6, respectively. The sorption performance of anion exchange resin at the low concentration of Se, namely, was much better than that of granular activated carbon. The Se ions from industrial wastewater throughout neutralization process and two steps of adsorption using anion exchange resin was removed to 97.7%.

산 처리한 활성탄을 이용한 수중 유기물의 흡착 및 오존 분해 (Adsorption and catalytic ozonation of aquatic organic compound by acid-treated granular activated carbon)

  • 남윤선;이동석
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.127-132
    • /
    • 2011
  • Humic substances is accounted for for the largest proportion in natural organic matter(NOM) and NOM is widely distributed in varying concentration in all aquatic and soil. They can affect water quality adversely in several ways by contributing undesirable color, complexing with metal and yielding metal concentrations exceeding normal solubility. Ozonation is one of the efficient treatments for degradation of humic substances which cause some problems in water treatment. Especially, the combination of ozone and granular activated carbon was applied to degradation humic acid in aquatic system. The aim of this work to test the available of acid-treated granular activated carbon as catalyst in the ozonation of humic acid.

  • PDF

염화철(III)로 표면개질 활성탄을 이용한 비소제거 (Arsenic Removal using the Surface Modified Granular Activated Carbon treated with Ferric Chloride)

  • 박유리;홍성혁;김정환;박주양
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.77-85
    • /
    • 2012
  • The present study investigates treatment methods for removal of arsenic from wastewater. The granular activated carbon (GAC) with the coating of iron chloride ($FeCl_3$) was used for the treatment of a low concentration of arsenic from wastewater. Batch experiments were performed to investigate the synthesis of Fe-GAC (Iron coated granular activated carbon), effects of pH, adsorption kinetics and the Langmuir model. The synthesized Fe-GAC with 0.1 M $FeCl_3$ shows best removal efficiency. Adsorption studies were carried out in the optimum pH range of 4-6 for arsenic removal. The Fe-GAC showed promising results by removing 99.4% of arsenic. In the adsorption isotherm studies, the observed data fitted well with the Langmuir models. In continuous column study showed that As(V) could be removed to below 0.25 mg/L within 1,020 pore volume. Our results suggest that the surface modified granular activated carbon treated with $FeCl_3$ for effective removal of arsenic from wastewater.

Zero-valent Iron와 Granular Activated Carbon의 조합공정을 이용한 Fenitrothion의 제거에 관한 연구 (A Study on Removal of Fenitrothion by Integrated Zero-valent Iron and Granular Activated Carbon Process)

  • 이동윤;문병현
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.385-390
    • /
    • 2010
  • This study investigated the decomposition of fenitrothion in Smithion, which is applied on the golf course for pesticide, by the integrated Zero-valent iron(ZVI) and Granular activated carbon(GAC) process. First, the removal efficiencies of the fenitrothion by ZVI and GAC, respectively, were investigated. Second, the removal efficiencies of the fenitrothion by the integrated ZVI and GAC were investigated. The removal efficiencies of fenitrothion by ZVI were higher than those of TOC. The removal efficiencies of fenitrothion and TOC by GAC were similar. As the dosages of ZVI and GAC were increased, the removal efficiencies of fenitrothion and TOC increased. However, as the dosages of ZVI for pretreatment were increased, the adsorptions of fenitrothion on GAC were hindered.