• Title/Summary/Keyword: granitoids

Search Result 102, Processing Time 0.123 seconds

Petrogenetic Study on the Foliated Granitoids in the Chonju and the Sunchang area (II) - In the Light of Sr and Nd Isotopic Properites - (전주 및 순창지역에 분포하는 엽리상 화강암류의 성인에 대한 연구 (II) - Sr 및 Nd 동위원소적 특성을 중심으로 -)

  • Na, Choon-Ki;Lee, In-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.249-262
    • /
    • 1997
  • The Sr and Nd isotopic compositions of two foliated granitic plutons located in the Chonju and Sunchang area were determined in order to reconfirm the intrusion ages of granitoids and to study the sources of granitic magmas. The best defined Rb-Sr isochron for the whole rock samples of the Chonju foliated granite (CFGR) give an age of $284{\pm}12Ma$, suggesting early Permian intrusion age. In contrast, the whole rock Rb-Sr data of the Sunchang foliated granite (SFGR) scatter widely on the isochron diagram with very little variation in the $^{87}Rb/^{86}Sr$ ratios and, therefore, yield no reliable age information. Futhermore they show the concordance of mineral and whole rock Rb-Sr isochron and divide into two linear groups with roughly the same slopes and significantly different $^{87}Sr/^{86}Sr$ ratios, indicating some kind of Rb-Sr distortion in whole rock scale and a difference in source material and/or magmatic evolution between two subsets. The reconstructed isochrons of 243 Ma, which was defined from the proposed data by the omission of one sample point with significantly higher $^{87}Rb/^{86}Sr$ ratio than the others, and 252 Ma, from the combined data of it and some of this study, strongly suggest the possibility that the SFGR was intruded appreciably earlier than had previously been proposed, although the reliability of these ages still questionable owing to high scatter of data points and, therefore, further study is necessary. All mineral isochrons for the investigated granites show the Jurassic to early Cretaceous thermal episode ranging from 160 Ma to 120 Ma Their corresponding initial $^{87}Sr/^{86}Sr$ ratios correlate well with their whole rock data, indicating that the mineral Rb-Sr system of the investigated granites was redistributed by the postmagmatic thermal event during Jurassic to early Cretaceous. The initial ${\varepsilon}Sr$ values for the CFGR (64.27 to 94.81) tend to be significantly lower than those for the SFGR (125.43 to 167.09). Thus it is likely that there is a marked difference in the magma source characteristics between the CFGR and the SFGR, although the possibility of an isotopic resetting event giving rise to a high apparent initial ${\varepsilon}Sr$ in the SFGR can not be ruled out. In contrast to ${\varepsilon}Sr$, both batholiths show a highly resticted and negative values of initial ${\varepsilon}Nd$, which is -14.73 to -19.53 with an average $-16.13{\pm}1.47$ in the CFGR and -14.78 to -18.59 with an average $-17.17{\pm}1.01$ in the SFGR. The highly negative initial ${\varepsilon}Nd$ values in the investigated granitoids strongly suggest that large amounts of recycled old continental components have taken part in their evolution. Furthermore, this highly resticted variation in ${\varepsilon}Nd$ is significant because it requires that the old crustal source material, from which the granitoid-producing melts were generated, should have a reasonably uniform Nd isotopic composition and also quit similar age. Calculated T2DM model ages give an average of $1.83{\pm}0.25Ga$ for CFGR and $1.96{\pm}0.19Ga$ for SFGR, suggesting the importance of a mid-Proterozoic episode for the genesis of two foliated granites. Although it is not possible to determine precisely the source rock compositions for the investigated foliatic granites, the Sr-Nd isotopic evidences indicate that midcrustal or less probably, a lower crustal granulitic source could be the most likely candidate.

  • PDF

Major Molybdenum Mineralization and Igneous Activity, South Korea (남한의 주요 몰리브덴 광화작용과 화성활동)

  • Choi, Seon-Gyu;Koo, Min-Ho;Kang, Heung-Suk;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The major Mo deposits in South Korea were formed during the Jurassic Daebo orogeny, the Late Cretaceous and the Tertiary post-orogenic igneous activities, and are characterized by a variety of genetic types such as pegmatite, greisen, skarn, porphyry and vein types. The Jangsu mine is a pegmatite-style deposit which is genetically related to the Jurassic ilmenite-series two-mica granite with the Mo mineralization age of $159.6{\pm}4.5$ Ma. The Geumseong mine occurs as a skarn/porphyry-style deposit associated with highly fractionated granite. Its age of Mo mineralization within aplitic cupola is about 96.5~l07.5 Ma. The Yeonil mine is a porphyry-style deposit, and the Geumeum mine is a veinlet-style deposit along the fracture zone with their mineralization ages of $58.4{\pm}1.6$ and $54.4{\pm}1.2$ Ma, respectively. The contrasts in the style of Mo mineralization in Korea reflect the different environment of the related magmatism. The Jurassic mineralization, being related to deep-seated granitoids, occurs as a pegmatite-style deposit, whereas the Cretaceous one, being related to subvolcanic granitoids, occurs as skarn/porphyry/vein-type ore deposits. The Tertiary Mo mineralization has a close relationship with the igneous activities associated with the Tertiary basin formation along the east coast, Korean peninsular.

New discoveries, skarn zonation, and skarn textures at the Geodo Mine in the Taebaeksan Basin, South Korea

  • Kim, Eui-Jun;Yang, Seok-Jun;Shin, Seungwook;Nam, Hyeong-Tae;Shin, Dongbok;Im, Heon-Kyoung;Oh, Il-Hwan;No, Sang-Gun;Cho, Sung-Jun;Park, Maeng-Eon
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.881-889
    • /
    • 2018
  • The Geodo skarn deposit is located in the Taebaeksan Basin, central eastern Korean Peninsula. The geology of the deposit consists of Cambrian to Ordovician calcareous sedimentary rocks and the Cretaceous Eopyeong granitoids. The skarns at Geodo occur around the Eopyeong granitoids, which consist, from early to late, of magnetite-bearing equigranular quartz monzodiorite, granodiorite, and dykes. These dykes emanated randomly from equigranular granodiorite and some of dykes spatially accompany skarns. Skarn Fe mineralization, referred as Prospect I and II in this study, is newly discovered beyond previously known skarns adjacent to the quartz monzodiorite. These discoveries show a vertical and lateral variation of skarn facies, grading from massive reddish-brown garnet-quartz in a lower and proximal zone to banded in an upper and distal zone, reflecting changes in lithofacies of the host rocks. Skarn veins in distal locations are parallel to sedimentary laminae, suggesting that lithologic control is important although proximal skarn has totally obliterated primary structures, due to intense retrograde alteration. Skarns at Geodo are systematically zoned relative to the causative dykes. Skarn zonation comprises proximal garnet, distal pyroxene, and vesuvianite (only in Prospect I) at the contact between skarn and marble. Retrograde alteration is intensely developed adjacent to the contact with dykes and occurs as modification of the pre-existing assemblages and progressive destruction such as brecciation of the prograde assemblages. The retrograde alteration assemblages consist predominantly of epidote, K-feldspar, amphibole, chlorite, and calcite. Most of the magnetite (the main ore mineral), replaces calc-silicate minerals such as garnet in the lower proximal exoskarn, whereas it occurs massive in distal pyroxene and amphibole in the upper and distal exoskarn. The emanation of dykes from the equigranular granodiorite has provided channelways for ascent of skarn-forming fluids from a deep source, whereas the style and nature of skarns suggest that originally structurally-controlled skarn-forming fluids may migrate long distances laterally to produce skarn in calcareous sedimentary rocks.

Petrogenesis of Mesozoic granites at Garorim Bay, South Korea: evidence for an exotic block within the southwestern Gyeonggi massif?

  • Kim, Ji In;Choi, Sung Hi;Yi, Keewook
    • Geosciences Journal
    • /
    • v.23 no.1
    • /
    • pp.1-20
    • /
    • 2019
  • We present data from the Mesozoic Keumkang, Palbong, and Baekhwa granites in Garorim Bay, in the southwestern part of the Gyeonggi massif, South Korea. Using major and trace element concentrations, Sr-Nd-Pb isotopic compositions, and sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages, we aim to constrain the petrogenesis of the granites and explain their origin within a broader regional geological context. SHRIMP U-Pb zircon ages of $232.8{\pm}3.2$, $175.9{\pm}1.2$, and $176.8{\pm}9.8$ Ma were obtained from the Keumkang, Palbong and Baekhwa granites, respectively. The Late Triassic Keumkang granites belong to the shoshonite series and show an overall enrichment in large ion lithophile elements (LILE), a depletion in high field strength elements (HFSE) relative to primitive mantle, compared with neighboring elements in the primitive mantle-normalized incompatible trace element diagram with notable high Ba and Sr contents, and negligible Eu anomalies. The Keumkang granites are typified by highly radiogenic Sr and unradiogenic Nd and Pb isotopic compositions: $(^{87}Sr/^{86}Sr)_i=0.70931-0.70959$, $(^{143}Nd/^{144}Nd)_i=0.511472-0.511484$ [$({\varepsilon}_{Nd})_i=-17.0$ to -16.7], and $(^{206}Pb/^{204}Pb)=17.26-17.27$. The Middle Jurassic Palbong and Baekhwa granites belong to the medium- to high-K calc-alkaline series, and show LILE enrichment and HFSE depletion similar to the Keumkang granites, but exhibit significant negative anomalies in Ba, Sr, and Eu. Furthermore, they have elevated Y and Yb contents at any given $SiO_2$ content compared with other Jurassic granitoids from the Gyeonggi massif. The Palbong and Baekhwa granites have slightly less radiogenic Sr and more radiogenic Nd and Pb isotopic compositions [$(^{87}Sr/^{86}Sr)_i=0.70396-0.70908$, $(^{143}Nd/^{144}Nd)_i=0.511622-0.511660$, $({\varepsilon}_{Nd})_i=-15.4$ to -14.7, $(^{206}Pb/^{204}Pb)=17.56-17.76$] relative to the Keumkang granites. The Keumkang granites are considered to have formed in a post-collisional environment following the Permo-Triassic Songrim orogeny that records continent-continent collision between the North and South China blocks, and may have formed by fractional crystallization of metasomatized lithospheric mantle-derived mafic melts. The Palbong and Baekhwa granites may have been produced from a gabbroic assemblage at pressures of less than ~15 kbar, associated with subduction of the paleo-Pacific (Izanagi) plate at the Eurasian continental margin. Elevated ${\varepsilon}_{Nd}(t)$ values in the granitoids from the southwestern part of the Gyeonggi massif relative to those of the central and northern parts, together with the comparatively shallow depth of origin, imply the presence of an exotic block in the Korean lithosphere.

patterns and crust - mantle interactio

  • Du, Y.
    • Proceedings of the KSEEG Conference
    • /
    • 2000.04a
    • /
    • pp.110-110
    • /
    • 2000
  • Temporal and spatial distribution patterns of the magmatic rocks and associated ore deposits in the Mesozoic magmatic - metallogenic belt along the Yangtz River, Anhui Province are used to determine and discuss the crust - mantle interaction processes. The magmatic rocks are Cu - Au mineralized high - K calc - alkalic intermediate ¬acidic (CAK) and Fe - Cu mineralized high - Na alkalic - calc intermediate - basic intrusive rocks (FCN) in the central part of the belt and grade to Cu - Mo - Pb - Zn - Ag mineralized calc - alkalic granitoids (CMG) and A - type granites (AG) in the southern and northern parts of the belt. Samples from the CAK and CMG yield Rb - Sr isochron ages of 137 - 140Ma with $(^{87}Sr/^{86}Sr)_{o}$ = 0.7060 - 0.7101, while those from the FCN and AG yield the ages of 120 - 129Ma with $(^{87}Sr/^{86}Sr)_{o}$ = 0.7047 - 0.7077. The Sr isotope ratios, CriTh ratios 0.4 - 3.1), Eu/Eu* ratios < 0.79 - 1.05) and initial epsilon (Nd) values (-16.6 - -6.3) for the CAK and CMG are consistent with magma derivation from old metamorphic basement rocks rich in metallogenic elements through a two - stage process of mantle - derived magma underplating caused by primary lithosphere extension and subsequent partial melting. On the basis of Sr isotope data, CriTh ratios (3.4 - 13.8), Eu/Eu* ratios (0.86 - 1.13) and initial epsilon (Nd) values (-7.7 - +1.4), the FCN and AG are considered to be formed through syntexis with material input from the mantle that resulted from further lithosphere extension followed by mantle - derived magma underplating on a large scale.

  • PDF

Temperature and Timing of the Mylonitization of the Leucocratic Granite in the Northeastern Flank of the Taebaeksan Basin

  • Kim, Hyeong-Soo
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.434-449
    • /
    • 2012
  • The Mesozoic leucocratic granite in the northeastern margin of the Taebaeksan Basin was transformed to protomylonite and mylonite. Mylonitic foliations generally strike to NWWNW and dip to NE with the development of a sinistral strike-slip (top-to-the-northwest) shear sense. Grain-size reduction of feldspar in the mylonitized leucocratic granite occurred due to fracturing, myrmekite formation and neocrystallization of albitic plagioclase along the shear fractures of K-feldspar porphyroclasts. As the deformation proceeded, compositional layering consisting of feldspar-, quartz- and/or muscovite-rich layers developed in the mylonite. In the feldspar-rich layer, fine-grained albitic plagioclase and interstitial K-feldspar were deformed dominantly by granular flow. On the other hand, quartz-rich layers containing core-mantle and quartz ribbons structures were deformed by dislocation creep. Based on calculations from conventional two-feldspar and ternary feldspar geothermometers, mylonitization temperatures of the leucocratic granite range from 360 to $450^{\circ}C$. It thus indicates that the mylonitization has occurred under greenschist-facies conditions. Based on the geochemical features and previous chronological data, the leucocratic granite was emplaced during the Middle Jurassic at volcanic arc setting associated with crustal thickening. And then the mylonitization of the granite occurred during the late Middle to Late Jurassic (150-165 Ma). Therefore, the mylonitization of the Jurassic granitoids in the Taebaeksan Basin was closely related to the development of the Honam shear zone.

Petrogenesis of the so-called Masanite in the Kyeongsang Sedimentary Basin (경상퇴적분지내에 분포하는 소위 마산암에 대한 암석성인연구)

  • Kim, Kyu Han;Lee, Hwa Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.529-541
    • /
    • 1996
  • The granitic rocks, so called Masanite, characterized by the micrographic, mylmekitic and perthitic textures, and zonal structure of the plagioclase in the Masan, Changwon and Jinhae areas belong to normal granite and granodiorite based on the modal analysis. These petrographic features strongly suggest the shallow emplacement of the plutons which are defined a typical calc-alkaline suite and I-type granitoids. The pressures of emplacement of the granitic plutons using the amphibole geobarometer were calculated to be 1.2kbar in the Masan area and 1.4kbar in the Changwon area. Their amphibole-plagioclase equilibrium temperatures were obtained to be $638^{\circ}C$ for the former ones and $724^{\circ}C$ for the latter. Homogenization temperatures and salinities for the type HI and IV fluid inclusions in quartz range from 298 to $541^{\circ}C$ (av. $425^{\circ}C$), and 10.5 to 34.6 wt.% NaCl (av. 28.2 wt.% NaCl), respectively. Gas compositions of the granitic rocks with fairly high $CO_2$ concentration relative to CH, correspond to the magnetite series granite of the mantle source. The terminology of the Masanite is not recommended usage. Because it is hard to discriminate in terms of petrological and petrogenetical characteristics between the Masanite and the Bulguksa granites in the Kyeongsang basin.

  • PDF

Ores and Fluid Inclusions from South Ore Deposits of the Dunjeon Gold Mine (둔전금광산(屯田金鑛山) 남광상(南鑛床)의 광석(鑛石)과 유체포유물(流體包有物))

  • Park, Hee-In;Woo, Young-Kyun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.107-118
    • /
    • 1987
  • The south ore deposits of the Dunjeon gold mine is a fissure-filling vein emplaced in the granitoids, skarnized and hornfelsified rocks of Ordovician Dumudong formation. The vein mineral paragenesis is complicated by repeated fracturing but three distinct depositional stages can be recognized; (1) base metal sulfides stage, (2) base metal sulfides, antimony-bismuthsulfosalts and native metals stage, (3) barren carbonates stage. Gold was mainly deposited in stage II. Fluid inclusion data indicate that fluid temperatures were from $310^{\circ}C$ to $402^{\circ}C$ during stage I and then declined steadily to $148^{\circ}C$ in the closing late stage III. Salinities were in the range of 0.4 to 5.0 equivalent weight percent NaCl and do not reveals any systematic trend through stag I, II and III. Ore mineralogy suggests that temperatures and sulfur fugacities in the earlier stage II were in the range of $340^{\circ}C$ to $360^{\circ}C$, $10^{-8}$ to $10^{-9}$ atm. respectively and then declined steadily to the range of $185^{\circ}C$ to $200^{\circ}C$ and $10^{-17}$ to $10^{-19}$atm. in the later stage II.

  • PDF

Studies on Geology and Mineral Resources of the Okcheon Belts -Mineralization in the Vicinity of the Muamsa Granite Stock- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -무암사화강암(務岩寺花崗岩) 주위에서의 광화작용(鑛化作用)에 관(關)하여-)

  • Yun, Suckew;Kim, Kyu Han;Woo, Jong Sang
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.3-17
    • /
    • 1986
  • Hundred mineral deposits including W-Mo, Pb-Zn-Cu, fluorite and talc occur in the Cambre-Ordovician limestone contacting with the Cretaceous Muamsa and Wolak granitoids in the Susanri-Hwanggangri mineralized zone. In most mineral deposits characterized by metasomatic replacement, skarn and hydrothermal vein types, two distinct tendencies were found as W-Mo mineralization in or/and near granitoid batholith and ($Pb-Zn-Cu(CaF_2)$) mineralization which is gradually increased toward the batholith. W-Mo veins of extensive vein system occupy northly striking fractures whilst $Pb-Zn-Cu-CaF_2$ veins strike northeast or northwest. In this work, three representative lead-zinc-copper deposits choosing the Dangdu, Useog and Eoksu mines were dealt with in detail. Skarn ore bodies in the Dangdu mine were grouped into early diopside rich clinopyoxene-garnet, barren skarn and ore bearing late hedenbergite rich clinopyroxene-garnet skarn. Temperature and $X_{CO_2}$, obtained from hedenbergite-andradite-calcite-quartz mineral equilibria in the Dangdu ore deposits were $580{\sim}650^{\circ}C$ and 0.15~0.3, respectively. Fluid inclusien evidence in the Useog mine indicates that main stage mineralization temperature ranges from 224 to $389^{\circ}C$ with a salinity of 2~17 equivalent wt. percent NaCl. Sphalerites from the Dangdu and Useog mines have 16~17.7 mole percent in FeS which is relatively consistent to those of some other lend-zinc ore deposits in South Korea. Filling tcmjCerature of fluid inclusion frem the Eoksu mine shows deposition of ore within the temperature ranges from 237 to $347^{\circ}C$ and within the salinity ranges from 2.6 to 10.77 equivalent wt. percent NaCl.

  • PDF

Gold and Silver Mineralization in the Dongweon Mine (동원광산의 금-은 광화작용)

  • Park, Hee-In;Park, Young-Rok
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.183-199
    • /
    • 1990
  • Ore deposits of Dongwon mine are composed of numerous gold and silver veins emplaced in sedimentary rocks of Cambrian Choseon Supergroup and granitoids of Cretaceous age. Ore veins of the mine can be divided into gold and silver veins on the base of vein structure, mineral assemblage and vein trends. Mutual relationships between gold and silver veins are uncertain. Gold veins are simple veins which are composed of base-metal sulfides, and electrum with quartz and ankerite. On the other hand, silver veins are complex veins which reveal three distinct stages of mineral deposition based on vein structure; stage I, deposition of small amounts of oxides and pyrite with quartz; stage II, deposition of base-metal sulfides, small amounts of Ag-bearing minerals, calcite and quartz; stage III, deposition of base metal sulfides, electrum, Ag-sulfosalts, native silver, carbonates and quartz. Homogenization temperature and salinity of fluid inclusion from quartz of gold vein are as follows; $229^{\circ}$ to $283^{\circ}C$, 4.7 to 6.4 wt.% equivalent NaCI. The ore mineralogy suggests that temperature(T) and sulfur fugacity($fs_2$) of the formation of the gold vein and stage III of silver vein are estimated as T ; $294^{\circ}$ to $318^{\circ}C$, $fs_2\;10^{-9.4}$ to $10^{-10.1}$ atm. and T; $240^{\circ}$ to $279^{\circ}C$, $fs_2;10^{-11.1}$ to $10^{-17.3}$ atm. respectively. Pressure condition during gold vein formation estimated from data of ore mineralogy and fluid inclusion range 500 to 750 bar.

  • PDF