• Title/Summary/Keyword: granitic powder

Search Result 4, Processing Time 0.019 seconds

Antifungal Activity of 5 Antifungal Agents and Granitic Powder on Microsporum canis (Microsporum canis에 대한 5가지 항진균제와 맥반석 가루의 항진균 효과)

  • Kang Tae-hyung;Lee Jeong-chi;Won Young-ho;Oh Seok-il;Lee Chung-gil;Lee Chai-yong
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.371-376
    • /
    • 2005
  • The aim of this study was to determine tile inhibitory effect of granitic powder against Microsporum canis. Fourteen strains of M. canis isolated from dgs and cats with fungal dermatitis and two strains isolated from humans were used in this study. The in vitro antifungal activities of granitic powder and 5 commercialized antifungal agents (terbinafine, itraconazole, ketoconazole, griseofulvin and fluconazole) were compared. The antifungal effect was measured by the broth microdilution method and was expressed as the minimal inhibitory concentration (MIC). The MIC value of the granitic powder was ranged from 31.3 to 250mg/ml. Terbinafine showed the lowest MIC value among the 5 commercial antifungal agents $(0.0078-0.125{\mu}g/ml)$, while fluconazole showed the highest MIC values $(125-1,000{\mu}g/ml)$. The MIC range of itraconazole, griseofuvin and ketoconazole were $0.125-0.5{\mu}g/ml\;0.625-5{\mu}g/ml$ and $10-40{\mu}g/ml$ respectively. The Geometric mean(GM) MIC values of terbinafine and ketoconazole against M. canis isolated from human were $0.0078{\mu}g/ml\;and\;10{\mu}g/ml$, respectively, while the GM MIC values of these agents against M. canis isolated from animals were $0.063{\mu}g/ml\;and\;31.4{\mu}g/ml$, respectively. Other antifungal agents did not show any significant differences in antifungal activity against M. canis of animal or human origin. Although granitic powder was shown to have antifungal activity, it was much lower than that of the 5 commercialized antifungal agents.

Analyses of Mineral Composition of Geochang Granitic Rocks for Stone Specification (거창화강석 품질기준 설정을 위한 광물조성 분석)

  • Choi, Jin-Beom;Jwa, Yong-Joo;Kim, Keon-Ki;Hwang, Gil-Chan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.363-381
    • /
    • 2006
  • Mineral compositions of granitic rocks from Geochang, Pocheon, Iksan, and China were obtained by the modal analysis, CIPW norm calculations, and Rietveld quantitative analysis for stone specification of the Geochang granitic rocks. The Geochang granitic rocks show grey to dark in color and medium grained porphyritic texture. They mainly consist of quartz, plagioclase, alkali feldspar, and biotite. Among three different method for determining the mineral compositions of granitic rocks, normative compositions using X-ray fluorescence data are not appropriate for representing real mineral composition. Rietveld quantitative analysis using X-ray powder diffraction data is proved better method to determine exact mineral compositions than modal analysis using microscopic observation. Q-A-P diagram shows that the Geochang granitic rocks are typical granodiorite, whereas the granitic rocks of Pocheon, Iksan, and China are monzogranite, monzogranite to granodiorite, and granodiorite, respectively. Compared to China ones, the Geochang granitic rocks are nearly close to each other in mineral composition.

Geochemical Enrichment and Migration of Environmental Toxic Elements in Stream Sediments and Soils from the Samkwang Au-Ag Mine Area, Korea (삼광 금-은광산 일대의 하상퇴적물과 토양내 함유된 독성원소의 지구화학적 부화와 이동)

  • Lee, Chan Hee;Lee, Byun Koo;Yoo, Bong-Cheal;Cho, Aeran
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 1998
  • Dispersion, migration and enrichment of environmental toxic elements from the Samkwang Au-Ag mine area were investigated based upon major, minor and rare earth element geochemistry. The Samkwang mine area composed mainly of Precambrian granitic gneiss. The mine had been mined for gold and silver, but closed in 1996. According to the X-ray powder diffraction, mineral composition of stream sediments and soils were partly variable mineralogy, which are composed of quartz, orthoclase, plagioclase, amphibole, muscovite, biotite and chlorite, respectively. Major element variations of the host granitic gneiss, stream sediments and soils of mining and non-mining drainage, indicate that those compositions are decrese $Al_2O_3$, $Fe_2O_3$, MgO, $TiO_2$, $P_2O_5$ and LOI with increasing $SiO_2$ respectively. Average compositional ranges (ppm) of minor and/or environmental toxic elements within those samples are revealed as As=<2-4500, Cd=<1-24, Cu=6-117, Sb=1-29, Pb=17-1377 and Zn=32-938, which are extremely high concentrations of sediments from the mining drainage (As=2006, Cd=l1, Cu=71, Pb=587 and Zn=481 ppm, respectively) than concentrations of the other samples and host granitic gneiss. Major elements (average enrichment index=6.53) in all samples are mostly enriched, excepting $SiO_2$, $Na_2O$ and $K_2O$, normalized by composition of host granitic gneiss. Rare earth element (average enrichment index=2.34) are enriched with the sediments from the mining drainage. Minor and/or environmental toxic elements within all samples on the basis of host rock were strongly enriched of all elements (especially As, Br, Cu, Pb and Zn), excepting Ba, Cr, Rb and Sr. Average enrichment index of trace elements in all samples is 15.55 (sediments of mining drainage=37.33). Potentially toxic elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) of the samples revealed that average enrichment index is 46.10 (sediments of mining drainage=80.20, sediments of nonmining drainage=5.35, sediments of confluent drainage=20.22, subsurface soils of mining drainage=7.97 and subsurface soils of non-mining drainage=4.15). Sediments and soils of highly concentrated toxic elements are contained some pyrite, arsenopyrite, sphalerite, galena and goethite.

  • PDF

Influence of Dissolved Ions on Geochemical Dissolution of Uranium in KURT Granite (KURT 화강암 내 우라늄의 지화학적 용출특성에 미치는 용존이온의 영향)

  • Cho, Wan Hyoung;Baik, Min Hoon;Ryu, Ji-Hun;Lee, Jae Kwang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.281-290
    • /
    • 2018
  • In order to understand the long-term behavior of radionuclides in granite environments, geochemical behavior characteristics of uranium in granitic host rock of KURT (KAERI Underground Research Tunnel) were investigated by dissolution experiment with different reaction time and solutions. In the dissolution experiment, significantly increased dissolution levels of uranium from granite powder samples were identified during the reaction time of 0~10 days for reaction solutions ($UD-CO_3$ and UD-Bg) containing a large amount of $CO_3{^{2-}}$. On the other hand, significantly increased dissolution levels of uranium were also identified for reaction solutions containing Na and Ca after 60 days. Dissolution of uranium continuously increased in reaction solutions of $UD-CO_3$ ($44.61{\mu}g{\cdot}L^{-1}$), UD-Bg ($41.01{\mu}g{\cdot}L^{-1}$), UD-Na ($26.87{\mu}g{\cdot}L^{-1}$), UD-Ca ($20.26{\mu}g{\cdot}L^{-1}$), UD-CaSi ($17.03{\mu}g{\cdot}L^{-1}$), and UD-Si ($10.47{\mu}g{\cdot}L^{-1}$) in the experimental period of ~270 days. However, after day 270, dissolution of uranium showed a decreasing tendency. This is thought to have occurred because existing uranium in granite samples reached the limit of dissolution by interaction with reaction solutions. Concentrations of dissolved uranium and points of maximum concentration value were found to differ depending on the $CO_3{^{2-}}$ presence in the mixed reaction solution and on the geochemical type of the water. It is estimated that differences in the reaction rate between the granite sample and the reaction solution are due to the influence of dissolved ions in the reaction solution.