• Title/Summary/Keyword: grain weight

Search Result 1,167, Processing Time 0.022 seconds

Effects of Elevated Air Temperature on Yield and Yield Components of Rice (온도 상승 조건이 벼의 수량 및 수량구성요소에 미치는 영향)

  • Lee, Kyu-Jong;Nguyen, Duc-Nhuan;Choi, Doug-Hwan;Ban, Ho-Young;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.156-164
    • /
    • 2015
  • High temperature stress would affect rice production in the future as heat wave is expected to occur frequently under climate change conditions. The objective of this study was to obtain rudimentary information to assess the impact of heat stress on rice yield and its yield component in Korea. Two rice cultivars "Hwaseongbyeo" (Japonica) and "Dasanbyeo" (Tongil-type) were grown at different nitrogen fertilization levels in two seasons. These cultivars were grown in 1/5000a Wagner pot placed within four plastic houses where temperature was controlled at ambient, ambient$+1.5^{\circ}C$, ambient$+3^{\circ}C$ and ambient$+5^{\circ}C$ throughout the rice growing season in Suwon ($37^{\circ}16^{\prime}N$, $128^{\circ}59^{\prime}E$), Korea. The degree of temperature change affected grain yield whereas the level of nitrogen had little impact on grain yield. The number of panicle per pot and spikelet per panicle were not significantly different among temperature treatments in both cultivars tested. In contrast, 1000-grain weight and ripened grain ratio were decreased significantly under the treatments raising the air temperature to the level of $5.0^{\circ}C$ and $1.5^{\circ}C$ above the ambient air temperature in Dasanbyeo and Hwaseongbyeo, respectively. Reduction of 1000-grain weight and ripened grain ratio under the temperature treatments of $3.0^{\circ}C$ and $5.0^{\circ}C$ above the ambient air temperature resulted in significantly less grain yield for Dasanbyeo and Hwaseongbyeo, respectively. The greater sensitivity of grain yield to temperature increase in Dasanbyeo was attributable to the sharp decrease of 1000-grain weight and ripened grain ratio with the temperature rise above $23^{\circ}C$ during ripening period. On the other hand, Hwaseongbyeo had little variation of them in the temperature range of $23-27^{\circ}C$. These results suggested that grain yield would decrease under future climate conditions due to grain weight decreased by shorter grain filling period as well as the ripened grain ratio reduced by spikelet sterility and early abortion of rice kernel development. Thus, it would be essential to use cultivars tolerant to heat stress for climate change adaptation, which merits further studies for developing varieties that have traits to avoid spikelet sterility and early abortion of rice kernel, e.g., early morning flowering, under heat wave.

Performance Improvement of Smart Counter for Uneven Small Grain (지능형 미소비균일체 계수기의 성능개선)

  • Cho, Si-Hyeong;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.127-131
    • /
    • 2009
  • This paper presents the development of smart counting system that is proper for grains with uneven unit weight or shape. This device can detect the small differences of a light beam and count the pulse from wave shape control, when the grain is going on the light screen, which is made by the light beam screen sensor. It can, different from the former conventional device, distinct the uneven grains for counting detect, by using the dedicated hardware and the software algorithm of the light sensor.

  • PDF

Varietal Differences of Leaf Senescence and Photosynthate Translocation Rate During Grain Filling Period in Barley (대맥의 등숙기간중 엽신의 노화와 동화산물전류의 품종간 차이)

  • 남윤일;구본철;연규복
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.166-173
    • /
    • 1991
  • In order to determine the relationships between the rates of leaf senescence and photosynthate translocation during the grain filling periods in barley, field experiments were conducted through 1989/1990 crop year. Thirty barley varieties and lines having different leaf senescence were used for the experiments. Varieties differed significantly in the rate of leaf senescence and rate of grain filling. The rate of leaf senescence at early (10-20days after heading) and late period (20-30days after heading) during of grain filling were positively correlated with the rate of grain filling in same period, respectively. But the rate of leaf senescence at 10-20 days after heading negatively correlated with the rate of grain filling during the whole grain filling period (10-35 days after heading). Whereas, the rate of leaf senescence at late period was positively associated with the rate of grain filling during the whole grain filling period. Rates of grain filling at the late and whole periods have positively influence on grain weight(r=0.62**~-0.93**), but rate of leaf senescence at early period and duration of grain filling negatively correlated with the grain weight (r=-0.33~ -0.15). The patterns of leaf senescence index for the varieties tested were grouped by four. Among these patterns, the most ideal pattern was IV type.

  • PDF

Assessment of Critical Temperature for the Grain Filling of Late Transplanted Temperate Rice

  • Woonho Yang;Shingu Kang;Dae-Woo Lee;Jong-Seo Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.170-170
    • /
    • 2022
  • Grain filling traits of rice were traced to determine the critical temperature that ceased grain filling process, from the late transplanted temperate rice varieties in the field conditions of2020 and 2021. The tested three varieties were transplanted six times with four target heading dates of 20 Aug. (control), 10 Sep., 20 Sep. and 30 Sep. Nine times of sampling were made from a week after heading with three replicates for each treatment. Development of grain filling percentage, grain dry weight and milled rice weight demonstrated sigmoid curves in the first and second transplants of 2020, and in the first to third transplants of 2021. The three grain filling traits in the 2020 third transplants and in the 2021 fourth transplants initially increased with the progress of grain development, and reached the peaks at certain time points, then decreased thereafter. Non-linear regression analyses, performed for the traits in the transplants that showed sigmoid curves except control, indicated that 95% of the final data (95% FD) was attained when the seven-day moving temperature (Sd-MovT) was 8.4-9.6℃, which excluded the cases when the temperature before the dates of 95% FD was lower than that on the dates of 95% FD. Sd-MovT on the date of peak data was 8.5-9.8℃ in the 2020 third transplants and 6.9-8.3℃ in the 2021 fourth transplants. Grain development was observed when seven-day mean temperature (Sd-MT) from 35 to 41 days after heading date was 9.4-10.8℃ in the 2020 third transplants and 10.1-11.9℃ in the 2021 fourth transplants. But Sd-MT of 8.7-9.1℃ in 2020 and 6.9-7.6℃ in 2021, at 42-48 days after heading, resulted in no progress of grain development. Overall, Sd-MovT at the point of stagnated grain development appeared in the range of 6.9-9.8℃. The lowest Sd-MT that showed the progress of grain development was 9.4-9.5℃ and the highest Sd-MT that showed no grain development was 9.1℃, both of which appeared in Odae and Haiami of the 2020 third transplants Therefore it is concluded that critical temperature for the grain development of temperate rice in natural conditions exists between 9.1℃ and 9.5℃.

  • PDF

VALUE OF BARLEY GRAIN AND COTTONSEED CAKE AS SUPPLEMENTS TO FOURWING SALTBUSH, AND THE LIVE WEIGHT GAINS AND WATER CONSUMPTION OF SHEEP FED THE DIETS

  • Rehman, Atiq-ur;Thompson, E.F.;Rafique, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.647-650
    • /
    • 1996
  • Fifteen sheep were used in a trial which compared the feeding value of whole barley gain and cottonseed cake as supplements to a basal diet of leaves of fourwing saltbush (Atriplex canescens). Diet SB contained 700 g (air-dry matter) of saltbush alone, diet SB + BG contained 700 g SB with 400 g whole barley grain and diet SB + CS contained 700 g SB with 400 g cottonseed cake. The digestibility of the dry matter of diets SB (69%) and SB + CS (70%) were lower (p < 0.001) than of diet SB + BG (76%). Sheep offered SB alone daily lost 80g whereas those fed the other diets gained 11 g (SB + CS) or 17 g (SB + BG) per day. Daily water consumption of the sheep offered the three diets was similar (p > 0.05), but their water consumption was higher (p < 0.001) than that of sheep offered daily 700 g wheat straw and 200 g barley grain. The results indicate that, at the levels of feeding used, barley grain and cottonseed cake had similar value as supplements to fourwing saltbush harvested in summer. The addition of the supplement allowed the sheep to gain some live weight. However, the presence of saltbush leaves in the diet resulted in higher water intakes by the sheep.

Characteristics of Grain Quality at Different Transplanting Times among Rice Cultivars (벼의 품종별 이앙시기가 미질 특성에 미치는 영향 IV. 지경위치별 미립의 외관특성과 미질특성의 변화)

  • 고재권
    • Korean Journal of Plant Resources
    • /
    • v.11 no.2
    • /
    • pp.152-156
    • /
    • 1998
  • This experiment was conducted to investigated the characteristics of grain appearance, chemical components. gelatinization, and palatability of cooked rice on each rachis branches as harvested from the transplanting plot of May 20 and June 5 in each two varieties of early-maturing and late-maturing types. In evaluation of rachis branches, the percentage of ripended grain and 1,000 grain weight were found to be high and heavy at upper part of panicle. The factors influencing palatability such as maximum viscosity and breakdown as gelatinization characteristics, and hardness, apringiness, cohesiveness and chewiness as texture characteristics of cooked rice were found to be high at upper part of panicle , indicating the parlability was favored more at upper part than at lower part of panicle due to the genetics and physiological metabolism of rice plants.

  • PDF

Effect of Grain Size and Replacement Ratio on the Plastic Properties of Precipitated Calcium Carbonate Using Limestone as Raw Material

  • Baek, Chul Seoung;Cho, Kye Hong;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.127-131
    • /
    • 2014
  • Precipitated calcium carbonate(PCC) inorganic fillers for plastic offera higher replacement ratio with improved mechanical properties than any other inorganic fillers. Due to its secure economic feasibility, its fields of application areexpanding. For optimized PCC grain size and polymer replacement ratio, it is good to maintain at least $0.035{\mu}m$ grains and keep double the grain size of distance between particles, depending on the molecular weight and volume replacement rate of the polymer. PCC has unique characteristics, ie, with smaller grain size, dispersibility decreases, and if grain size is not homogenous, polymer cracking occurs. The maximum replacement ratio of PCC is approximately 30%, but in the range of 10 - 15% it produces the highest mechanical strength. When mixed with a biodegradable plastic like starch, it also improves initial environmental degradability.

Effect of grain refinement on the performance of AZ80 Mg alloys during wear and corrosion

  • Naik, Gajanan M;Gote, Gopal D.;Narendranath, S;Kumar, S.S. Satheesh
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.105-118
    • /
    • 2018
  • Magnesium and its alloys are attracted towards all engineering applications like automotive, marine, aerospace etc. due to its inherent high strength to weight ratio. But, extensive use of Mg alloys is limited to the current scenario because of low wear and corrosion resistance behavior. However, equal channel angular press is one of the severe plastic deformation technique which has been effective method to improve the wear and corrosion resistance by achieving fine grain structure. In this study, the effect of grain refinement on wear and corrosion resistance of AZ80 Mg alloys were investigated. The wear behavior of the coarse and fine-grained Mg alloys was examined through $L_9$ orthogonal array experiments in order to comprehend the wear behavior under varies control parameters. It was shown that ECAPed alloy increased the wear and corrosion resistance of the Mg alloy through the formation of fine grain and uniform distribution of secondary ${\beta}-phase$. Also, the performance of AZ80 Mg alloy for these changeswas discussed through SEM morphology.

Performance of Male Crossbred Calves as Influenced by Substitution of Grain by Wheat Bran and the Addition of Lactic Acid Bacteria to Diet

  • Khuntia, A.;Chaudhary, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.188-194
    • /
    • 2002
  • To study the effect of wheat bran and lactic acid producing bacteria (LAB) on the performance of calves, 20 crossbred male cattle calves (day old), distributed into two groups were fed on calf starters containing 50 or 0% maize grain, along with green berseem ad libitum and milk as per body weight. Each group was further divided into two sub groups and one subgroup of each group was supplemented with mixed culture of LAB (Lactobacillus acidophilus L. casei, L. Jugarti). Milk feeding was discontinued after 8 weeks of age. The addition of culture increased (p<0.05) DM intake in calves receiving grainless diet from eighth week to the thirteenth one. There was about 21% higher body weight gain and 14% lower feed : gain ratio in culture supplemented calves. DM digestibility was significantly lower (p<0.05) in calves getting grain without culture. The crude protein NDF and ADF digestibility was higher (p<0.05) in grainless than the grain fed group. No major change on rumen fermentation pattern among different treatments was found. The concentration of total volatile fatty acids (TVFA) and protozoa count was higher (p<0.05) in grain fed group. However, lactic acid concentration was higher and rumen pH was lower due to culture feeding. The incidence as well as severity of diarrhoea was reduced in culture supplemented group. The results indicate that crossbred calves can be reared successfully on grainless diet and berseen fodder. The performance of calves was also improved by LAB supplementation.

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF