• Title/Summary/Keyword: grain size evolution

Search Result 139, Processing Time 0.026 seconds

Constitutive Modelling of Alloys Implementing Microstructural Variables (미세조직학적 변수를 고려한 합금의 구성모델링)

  • ;;;Yuri Estrin
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.129-132
    • /
    • 2002
  • A unified elastic-viscoplastic ocnstitutive model based on dislocation density considerations is described. A combination of a kinetic equation, which describes the mechanical response of a material at a given microstructure in terms of dislocation glide and evolution equations for internal variables characterizing the microstructure provide the constitutive equations of the Model. Microstructural features of the material, such as the grain size, spacing between second phase particles etc., are directly implemented in the constitutive equations. The internal variables are associated with the total dislocation density in the simple version of the model. The model has a modular structure and can be adjusted to describe a particular type of metal forming processes.

  • PDF

Formation of submicrocrystalline in Ti-13Nb-13Zr alloy without severe deformation and enhanced mechanical compatibility (Ti-13Nb-13Zr 합금의 저 변형량에서 초미세 결정립 형성 및 기계적 적합성 향상)

  • Park, C.H.;Yeom, J.T.;Chun, Y.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.328-331
    • /
    • 2009
  • Microstructural evolution of alpha and beta phases during dynamic globularization of near-beta Ti-13Nb-13Zr alloy was investigated to determine the optimum processing conditions. The submicrocrystalline alloy sheet with ${\sim}80%$ of high-angle grain boundaries was produced utilizing dynamic globularization at temperature of $600^{\circ}C$, equivalent strain rate of $10^{-1}\;s^{-1}$ and strain of 1.4. The refined structure with the gain size of ${\sim}0.4{\mu}m$ showed 25-60% enhanced mechanical compatibility as compared to those of the conventional mill-annealed or solution treated and aged microstructures.

  • PDF

Effects of Ag Seed Layer on the Magnetic Properties and the Microstructural Evolution of SmCo/Cr Thin Films (Ag 씨앗층이 SmCo/Cr 박막의 자기적 특성과 미세구조에 미치는 영향)

  • 이성래;고광식;김영근
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.63-71
    • /
    • 2001
  • The effects of an Ag seed layer on the magnetic properties and the microstructural evolution of SmCo/Cr thin films deposited on glass substrates were investigated. Coercivity of the films is 2.0 kOe when the thickness of Ag seed layer was 1nm thick, but it increased to 2.7 kOe when the Ag seed layer thickness is 3 nm. The increase of coercivity for film with 3 nm-thick Ag is due to roughness of Cr and grain size of Cr by the Ag microbumps. Ar partial pressure influenced on the formation of Ag microbumps, for example, they were formed at 5 mTorr when Ag thickness was 1 nm. The mechanism of magnetization reversal of the SmCo films changed from domain wall motion to domain rotation as the Ag inserted. This was thought to be due to inhibition of domain wall motion by the reduction of Cr grain size and the increase of roughness.

  • PDF

Rheological Models for Describing Fine-laden Debris Flows: Grain-size Effect (세립토 위주의 토석류에 관한 유변학적 모델: 입자크기 효과)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.49-61
    • /
    • 2011
  • This paper presents the applicability of rheological models for describing fine-laden debris flows and analyzes the flow characteristics as a function of grain size. Two types of soil samples were used: (1) clayey soils - Mediterranean Sea clays and (2) silty soils - iron ore tailings from Newfoundland, Canada. Clayey soil samples show a typical shear thinning behavior but silty soil samples exhibit the transition from shear thinning to the Bingham fluid as shear rate is increased. It may be due to the fact that the determination of yield stress and plastic viscosity is strongly dependent upon interstructrual interaction and strength evolution between soil particles. So grain size effect produces different flow curves. For modeling debris flows that are mainly composed of fine-grained sediments (<0.075 mm), we need the yield stress and plastic viscosity to mimic the flow patterns like shape of deposition, thickness, length of debris flow, and so on. These values correlate with the liquidity index. Thus one can estimate the debris flow mobility if one can measure the physical properties.

Effect of Heat Treatment on The Magnetic Properties of FeSiB Thin Film (열처리가 FeSiB 연자성 박막의 자기특성에 미치는 영향)

  • Hong, Jong-Wook;Jang, Tae-Suk;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.880-882
    • /
    • 2002
  • We have prepared magnetic thin films of FeSiB by sputtering and examined microstructure and magnetic properties of the annealed films in order to investigate the feasibility of the films to microsensor application. Effects of vacuum annealing on the magnetic properties of $Fe_{84}$$Si_{6}$$B_{10}$ films have been examined as a function of temperature. The heating rate and the holding time were 10 K/min and 1 hour, respectively. Vacuum condition was held during cooling to prevent oxidation of the films. The coercivity did not show any noticeable change (~1500 A/m), although the grain size of the crystalline phase in the annealed films increased gradually up to about 16 nm until 673 K. However, both the grain size and the coercivity increased steeply when the annealing temperature increased over 723 K. Since the saturation magnetization is closely related to the phase evolution, the variation of the saturation magnetization of the annealed films was similar to that of the ribbon materials; the thin films were transformed from amorphous to crystalline with $\alpha$-(Fe,Si) phase by increasing annealing temperature.

Dynamic recrystallization and microstructure evolution of a Nb-V microalloyed forging steel during hot deformation

  • Zhao, Yang;Chen, Liqing;Liu, Xianghua
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.217-225
    • /
    • 2014
  • In this study, a forging steel alloyed with both Nb and V was used as experimental material and the hot deformation behavior has been studied for this steel by conducting the compressive deformation test at temperature of $900-1150^{\circ}C$ and strain rate of $0.01-0.01s^{-1}$ in a MMS-300 thermo-mechanical simulator. The microstructure evolution, particularly the dynamically recrystallized microstructure, of the experimental steel at elevated temperatures, strain rates and strain levels, was characterized by optical microstructural observation and the constitutive equation in association with the activation energy and Zener-Hollomon parameter. The curves of strain hardening rate versus stress were used to determine the critical strain and peak strain, and their relation was connected with Zener-Hollomon parameter. Under the conditions of processing temperature $900^{\circ}C$ and strain rate $0.01s^{-1}$, the dynamic recrystallization took place and the austenite grain size was refined from $164.5{\mu}m$ to $28.9{\mu}m$.

Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk (초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가)

  • Cha, D.J.;Kim, D.K.;Kim, Y.D.;Bae, W.B.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF

Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy

  • Jiang, Yanbo;Xin, Yong;Liu, Wenbo;Sun, Zhipeng;Chen, Ping;Sun, Dan;Zhou, Mingyang;Liu, Xiao;Yun, Di
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.226-233
    • /
    • 2022
  • In the present work, a phase-field model was developed to investigate the influence of recrystallization on bubble evolution during irradiation. Considering the interaction between bubbles and grain boundary (GB), a set of modified Cahn-Hilliard and Allen-Cahn equations, with field variables and order parameters evolving in space and time, was used in this model. Both the kinetics of recrystallization characterized in experiments and point defects generated during cascade were incorporated in the model. The bubble evolution in recrystallized polycrystalline of U-Mo alloy was also investigated. The simulation results showed that GB with a large area fraction generated by recrystallization accelerates the formation and growth of bubbles. With the formation of new grains, gas atoms are swept and collected by GBs. The simulation results of bubble size and distribution are consistent with the experimental results.

Microstructure and Properties of $Cr_{2}O_{3}$additive ternary PZT Ceramics ($Cr_{2}O_{3}$이 첨가된 PNN-PZT 압전세라믹스에서의 미세구조 및 특성)

  • 박정호;김철수;김성곤;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.972-975
    • /
    • 2001
  • The effect of Cr$_2$O$_3$(0 to 0.5 wt%) doping on the microstructure and electrical properties of ternary Pb(Zr,Ti)O$_3$-Pb(Ni,Nb)O$_3$piezoelectric ceramic has been investigated. Abnormal grain growth (grain size 3.3 to 11.2 $\mu$m) and densification are found. Minor additives of $\leq$0.1 wt% improve the mechanical coupling factor, but with more additives of $\geq$0.2 wt% electrical properties deteriorate. Thus, these phenomna can be ascribed mainly to anomalous developed microstructure. The large grains were composed of a core region that is free of Cr and a surrounding shell region rich in Cr. The interfaces between the core and the shell were composed of misfit dislocations. The mechanical properties of the specimens were strongly influenced by this microstructural change. The microstrutural and compositonal evolution of the specimens containing different amounts of Cr$_2$O$_3$were monitored. Electrical properties were measured and related to the variations in the microstructure.

  • PDF

Characterization of Subsurface Damage in Si3N4 Ceramics with Static and Dynamic Indentation

  • Kim, Jong-Ho;Kim, Young-Gu;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.537-541
    • /
    • 2005
  • Silicon nitride is one of the most successful engineering ceramics, owing to a favorable combination of properties, including high strength, high hardness, low thermal expansion coefficient, and high fracture toughness. However, the impact damage behavior of $Si_3N_4$ ceramics has not been widely characterized. In this study, sphere and explosive indentations were used to characterize the static and dynamic damage behavior of $Si_3N_4$ ceramics with different microstructures. Three grades of $Si_3N_4$ with different grain size and shape, fine-equiaxed, medium, and coarse-elongated, were prepared. In order to observe the subsurface damaged zone, a bonded-interface technique was adopted. Subsurface damage evolution of the specimens was then characterized extensively using optical and electron microscopy. It was found that the damage response depends strongly on the microstructure of the ceramics, particularly on the glassy grain boundary phase. In the case of static indentation, examination of subsurface damage revealed competition between brittle and ductile damage modes. In contrast to static indentation results, dynamic indentation induces a massive subsurface yield zone that contains severe micro-failures. In this study, it is suggested that the weak glassy grain boundary phase plays an important role in the resistance to dynamic fracture.