• Title/Summary/Keyword: grain size evolution

Search Result 139, Processing Time 0.022 seconds

Microstructural Evolution during Hot Deformation of Molybdenum using Processing Map Approach (변형지도 모델링을 통한 몰리브데늄의 고온 변형에 따른 미세조직 변화 연구)

  • Kim, Young-Moo;Lee, Sung-Ho;Lee, Seong;Noh, Joon-Woong
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.458-465
    • /
    • 2008
  • The hot deformation characteristics of pure molybdenum was investigated in the temperature range of $600{\sim}1200^{\circ}C$ and strain rate range of $0.01{\sim}10.0/s$ using a Gleeble test machine. The power dissipation map for hot working was developed on the basis of the Dynamic Materials Model. According to the map, dynamic recrystallization (DRX) occurs in the temperature range of $1000{\sim}1100^{\circ}C$ and the strain rate range of $0.01{\sim}10.0/s$, which are the optimum conditions for hot working of this material. The average grain size after DRX is $5{\mu}m$. The material undergoes flow instabilities at temperatures of $900{\sim}1200^{\circ}C$ and the strain rates of $0.01{\sim}10.0/s$, as calculated by the continuum instability criterion.

Study on Electronic Absorption and Surface Morphology of Double Layer Thin Films of Phthalocyanines

  • Park, Gyoo-Soon;Heo, Il-Su;Ryu, Il-Hwan;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.943-946
    • /
    • 2011
  • The electronic absorption and surface morphology evolution of two types of molecular double layer thin films, copper phthalocyanine (CuPc) layer deposited on chloro[subphthalocyaninato]boron(III) (SubPc) layer, denoted as SubPc/CuPc, and vice versa, with various thicknesses were investigated using ultraviolet (UV)-visible spectroscopy and atomic force microscopy (AFM). Both types of double layer structures showed similar broadened absorption patterns in the UV-visible region that were consistent with the fitted spectra following simple linear combination of the single layer absorption spectra of the two materials. In contrast, the surface morphology of double layer structures was dependent on the order of deposition. For the CuPc/SubPc structures, surface morphology was characterized by elongated grains, which are characteristic of SubPc thin films, indicating that the morphological influence of the underlying CuPc layer on the subsequent SubPc layer was not large. For the SubPc/CuPc structures, however, the underlying SubPc layer acted as a morphological template for the subsequently deposited CuPc layer. It was also observed that the grain size of the CuPc layer varied according to the thickness of the underlying SubPc layer.

Fabrication of Ni substrates made by powder metallurgy and casting method (초기시편 제조법에 따른 Ni substrate의 특성비교)

  • 임준형;김규태;김정호;장석헌;주진호;나완수;지봉기;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.55-58
    • /
    • 2003
  • We fabricated the textured Ni substrate and evaluated the effects of processing variables on microstructural evolution and texture transformation. Ni-rods as an initial specimen were prepared by two different methods, i.e., powder metallurgy(P/M) and plasma arc melting(PAM) The texture of the substrate was characterized by pole-figure and surface condition was evaluated by atomic force microscopy. It was observed that the texture of substrate made by P/M did not significantly varied with annealing temperature of 800~120$0^{\circ}C$ and the full-width at half-maximums (FWHM) of both in-plane and out-of-plane were 9$^{\circ}$~10$^{\circ}$. On the other hand, the texture of substrate made by PAM was more dependent on the annealing temperature and the FWHMs of in-plane texture was 9$^{\circ}$~13$^{\circ}$ at the temperature range. In addition, twin texture, (221)<221>, was formed as the temperature increased further. The grain size of substrate made by P/M was smaller than that made by PAM and this difference was correlated to the microstructure of initial specimens.

  • PDF

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma gas and RF Sputtering Power (플라즈마 가스와 RF 파워에 따른 NiO 박막의 우선배향성 및 표면형상 변화)

  • Ryu Hyun-Wook;Choi Gwang-Ryo;Noh Whyo-Sup;Park Yong-Ju;Kwon Yong;Park Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • Nickel oxide (NiO) thin films were deposited on Si(100) substrates at room temperature by RF magnetron sputtering from a NiO target. The effects of plasma gas and RF power on the crystallographic orientation and surface morphology of the NiO films were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were employed to characterize the deposited film. It was found that the type of plasma gases affected the crystallographic orientation, deposition rate, surface morphology, and crystallinity of NiO films. Highly crystalline NiO films with (100) orientation were obtained when it was deposited under Ar atmosphere. On the other hand, (l11)-oriented NiO films with poor crystallinity were deposited in $O_2$. Also, the increase in RF power resulted in not only higher deposition rate, larger grain size, and rougher surface but also higher crystallinity of NiO films.

Microstructure characterization technique of spacer garter spring coil X-750 material (스페이서 가터 스프링 코일 X-750 소재 정밀 조직 분석 방법)

  • Hyung-Ha Jin;I Seol Ryu;Gyeng-Geun Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.109-118
    • /
    • 2021
  • In the periodic surveillance material test for the spacer component of fuel channel assembly in CANDU, a microstructural characterization analysis is required in addition to the mechanical property evaluation test. In this study, detailed microstructure analysis and simple mechanical property evaluation of archive spacer parts were conducted to indirectly support the surveillance test and assist in the study of spacer material degradation. We investigated the microstructural characteristics of the spacer garter spring coil through comparative analysis with the plate material. The main microstructure characteristics of the garter spring coil X-750 are represented by the fine grain size distribution, the ordering phase distribution developed inside the matrix, the high dislocation density inside the grains, and the arrangement of coarse carbides. In addition, the yield strength of the garter spring coil X-750 was indirectly evaluated to be approximately 1 GPa. We also established an analytical method to elucidate the microstructural evolution of the radioactive spacer garter spring coil X-750 based on Canadian research experiences. Finally, we confirmed the measurement technique for helium bubble formation through TEM examination on the helium implanted X-750 material.

EFFECT OF PROCESS CONTROL AGENT ON THE MICROSTRUCTURE OF Ni-BASED ODS SUPERALLOY PRODUCED BY MECHANICAL ALLOYING AND SINTERING

  • JU-YEON HAN;HYUNJI KANG;SUNG-TAG OH
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.949-952
    • /
    • 2019
  • The effects of different types of process control agents (PCA) on the microstructure evolution of Ni-based oxide dispersion-strengthened superalloy have been investigated. Alloy synthesis was performed on elemental powders having a nominal composition of Ni-15Cr-4.5Al-4W-2.5Ti-2Mo-2Ta-0.15Zr-1.1Y2O3 in wt % using high energy ball milling for 5 h. The prepared powders are consolidated by spark plasma sintering at 1000℃. Results indicated that the powder ball-milled with ethanol as PCA showed large particle size, low carbon content and homogeneous distribution of elemental powders compared with the powder by stearic acid. The sintered alloy prepared by ethanol as PCA exhibited a homogeneous microstructure with fine precipitates at the grain boundaries. The microstructural characteristics have been discussed on the basis of function of the PCA.

Influence of Addition Amount of CaCO3on the Synthesizing behavior and Microstructural Evolution of CaZrO3 and m-ZrO2 in 5ZrSiO4-xCaCO3 Mixture System (5ZrSiO4-xCaCO3 혼합계에서 CaCO3첨가량이 CaZrO3와 m-ZrO2의 합성 및 미세구조변화에 미치는 영향)

  • Kim, Jae-Won;Lee, Jae-Ean;Jo, Chang-Yong;Lee, Je-hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.572-580
    • /
    • 2003
  • Synthesizing behavior and microstructural evolution of $CaZrO_3$and $m-ZrO_2$in a thermal reaction process of $ZrSiO_4$-$xCaCO_3$mixtures, where x is 7 and 19, were investigated to determine the addition amount of CaO in CaO:$ZrO_2$:$SiO_2$ternary composition. CaZrO$_3$-Ca$_2$SiO$_4$precursor prepared by the mixture of $ZrSiO_4$and CaCO$_3$in aqueous suspending media was controlled to the acidic (pH=4.0) condition with HCI solution to enhance the thermal reaction. The addition amount of dispersant into the $ZrSiO_4$-$xCaCO_3$slip increased with increasing mole ratio of $CaCO_3$, which was associated with the viscosity of slip. Decarbonation reaction was activated with an increase of the addition amount of $CaCO_3$, showing different final temperatures in $ZrSiO_4$-$7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures as about 980 and 116$0^{\circ}C$, respectively, for finishing decarbonation reaction. The grain morphology was changed to spherical shape for all samples with an increase of sintering temperature. The grain size and phase composition of the synthesized composites depended on the mixture ratio of Zrsi04 and CacO3 powders, indicating that the main crystals were m-ZrO2 ($\leq$3 $\mu\textrm{m}$) and $CaZrO_3$ ($\leq$ 7 $\mu\textrm{m}$) in $ZrSiO_4$$>-7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures, respectively.

Rock-magnetic Properties of Chimneys from TA25 Seamount in the Tofua Arc, Southwest Pacific (통가 EEZ내 TA25 해저산에서 채취한 열수광체의 암석자기학적 특성 연구)

  • Kim, Wonnyon;Pak, Sang Joon;Lee, Kyeong Yong;Moon, Jai-Woon;Kim, Hyun Sub;Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.207-214
    • /
    • 2013
  • To identify rock-magnetic properties of volcanogenic hydrothermal sulfide deposits, chimneys were obtained from the Tofua Arc in Southwest Pacific, using a remotely operated vehicle (ROV) and Grab with AV cameras (GTVs). Three different types of chimneys used in this study are a high-temperature chimney with venting fluid-temperature of about $200^{\circ}C$ (ROV01), a low-temperature chimney of about $80^{\circ}C$ (GTV01), and an inactive chimney (ROV02). Magnetic properties of ROV01 are dominated by pyrrhotite, except for the outermost that experienced severe oxidation. Concentration and grain-size of ROV01 pyrrhotite are relatively low and fine. For GTV01, both magnetic concentration and grain-size increase from interior to margin. Pyrrhotite, dominant in the core, becomes mixed with hematite in the rim of the chimney due to secondary oxidation. High concentration and large grain-size of magnetic minerals characterize the ROV02. Dominant magnetic phases are pyrrhotite, hematite and goethite. In particular, the outermost rim shows a presence of magnetite produced by magnetotactic bacterial activity. Such distinctive contrast in magnetic concentration, grain-size and mineralogy among three different types of chimney enables the rock-magnetic study to characterize an evolution of hydrothermal deposits.

Evaluation of mechanical properties on friction stir lap jointed Al6061/HT590 alloys (겹치기 마찰교반접합 된 Al6061/HT590 합금의 기계적 특성 평가)

  • Kim, Eun-Hye;Lee, Kwang-Jin;Song, Kuk-Hyun
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2015
  • This study was carried out to evaluate mechanical properties of the jointed Al6061/HT590 alloys by friction stir welding (FSW). FSW was conducted under the conditions with tool rotating speed of 500 RPM and traveling speed of 300 mm/min., where Ar gas was introduced to prevent the materials from corrosion during the welding process. Electron back-scattering diffraction (EBSD) was used to characterize microstructures such as grain size, misorientation angle and crystal orientation. Evolution of intermetallic compounds in Al6061 during the process were examined in terms of morphology, size and aspect ratio at three distinct zones Al base material, heat affected zone and stir zone, where transmission electron microscope (TEM) was used. It was revealed that FSW gave rise to refinement of grains as well as growth of intermetallic compounds in Al6061. The morphological changes of intermetallic compounds exerted an influence on mechanical properties, resulting in occurrence of fracture in the part of the base material instead of the jointed parts (heat affected zone and stir zone). This study systematically evaluated the microstructural evolutions during the FSW for joining Al6061 with HT590 and their effect on mechanical properties.

Effects of Solution Treatment Temperatures on Microstructure and Mechanical Properties of TIG-MIG Hybrid Arc Additive Manufactured 5356 Aluminum Alloy

  • Zuo, Wei;Ma, Le;Lu, Yu;Li, Shu-yong;Ji, Zhiqiang;Ding, Min
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1346-1358
    • /
    • 2018
  • A novel additive manufacturing method with TIG-MIG hybrid heat source was applied for fabricating 5356 aluminum alloy component. In this paper the microstructure evolution, mechanical properties and fracture morphologies of both as-deposited and heat-treated component were investigated, and how these were affected by different heat-treated temperature. The as-deposited microstructure showed dominant equiaxed grains with second phase, and the size of them is coarse in the bottom region, medium in the middle region and fine in the top region owing to different thermal cycling conditions. Compared with as-deposited microstructure, the size of grain becomes large and second phases gradually dissolve in the matrix as heat-treated temperature increase. Different microstructures determine the mechanical properties of component. Results show that average ultimate tensile strength enhances from 226 to 270 MPa and average microhardness increases from 64.2 to 75.3 HV0.1 but ductility decreases from 33 to 6.5% with heat-treated temperature increasing. For all components, the tensile properties are almost the same in the vertical direction (Z) and horizontal direction (Y) due to equiaxed grains, which exhibits isotropy, and the mechanisms of these are analyzed in detailed. In general, the results demonstrate that hybrid arc heat source has the potential to fabricate aluminum alloy component.