• 제목/요약/키워드: grain boundary layer

Search Result 154, Processing Time 0.022 seconds

High temperature oxidation behavior and surface modification of Ni-based superalloys (니켈기 초합금의 고온산화거동과 표면개질에 관한 연구)

  • Seol, Gyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.166-176
    • /
    • 1994
  • Ni base superalloys are composed of solid sohltion hardening elements(Co, Cr. Mo. W and so on) and $\gamma '$ precipitation hardening elements(A1, Ti, Nb, Ta and so on). To Improve the mechanical properties and oxidation resistanre of superalloys, rare earth elements(%r, Hf, Y and so on) are added to the inner substrate, or are used as coating materials. Their pffects on the growth rate and adhes~on of oxide are changed according to the kinds of oxides such as $AI_2O_3$ and $Cr_2O_3$. The effect of yttrium on the oxidation rate, grain size of oxide, internal structure, and crack resistance was investigated for two kinds of Ni-base superalloys. One in AF'115 superalloy containing Hf and the other is MA6000 superalloy containing $Y_2O_3$. They werr owid~zed at high temperature after yttrium surface modification using ion coater. Yttrium coating on the AF115 and MA6000 superalloys results in a marked change in the growth of the inner oxide. For AF115 superalloy, the degree of gram boundary segregation of $Cr_2O_3$, and prefer en^ tial oxidation of Hf are decreased, and the shape of inner oxidation layer was changed from triangle to plate type. For MA6000 superalloy, $Cr_2O_3$ oxide scale was transformed as outer oxidation layer of CrZOI and inner oxidation layer of $Cr_2O_3$.

  • PDF

High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor (초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin;Kim, Dae-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

LES for Turbulent Channel Flow with Blowing Velocity (분류유동이 있는 채널 난류유동의 LES 해석)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.699-705
    • /
    • 2007
  • Recent experimental data shows that the noticeable feature of irregular roughened spots on the fuel surface occurs during the combustion test with PMMA/GOX in the hybrid rocket motor. The generation of these unexpected patterns is likely to be resulted from the disturbed boundary layer due caused by wall blowing which is intented to simulate the process of fuel vaporization. LES technique was implemented to investigate both the flow characteristics near fuel surface and the subsequent evolution of turbulence modified by the wall blowing. Simple channel geometry instead of circular grain configuration was used for the investigation without chemical reactions in order to allow for a focused examination on the near-wall behavior at the Reynolds number of 22,500. It was shown that the wall blowing pushed turbulent structures upwards making them tilted and this skewed displacement, in effect, left the foot prints of the structures on the surface. This change of kinematics may explain the formation of irregular isolated spots on the fuel surface observed in the experiment.

The Patterns of Streamwise Vortex on the Fuel Surface in Hybrid Rocket Combustion (하이브리드 로켓 모터 연소 중 발생하는 streamwise 와류 특성)

  • Shin, Kyung-Hoon;Park, Kyung-Su;Mon, Khin Oo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.649-652
    • /
    • 2011
  • A series of hybrid rocket combustion experiments were carried out with PMMA/GOx changing diameter and length of the disk installed at pre-chamber. The disk can generate vortex shedding flow and change flow conditions prior to entering the fuel grain which could also alter the combustion characteristics and pressure oscillations. Isolated dimple-like surface roughness patterns distributed all over the fuel surface, which can be thought of as a realization of the inherent flow instability. It is very likely that the formation of cell structures is originated from the modification of boundary layer characteristics of an entering oxidizer flow caused by a blowing effect mainly taking place near the wall. This coincided with our LES results. It would be a meaningful basis to understand combustion instability of hybrid rocket motor.

  • PDF

Preparation of $Ba_{0.5}Sr_{0.5}TiO_3$ Thin Films by Off-Axis RF Magnetron Sputtering (Off-Axis RF Magnetron Sputtering 방법에 의한 $Ba_{0.5}Sr_{0.5}TiO_3$ 박막의 제조)

  • Shin, Jin;Hahn, Taek-Sang;Kim, Young-Hwan;Lee, Jae-Jun;Park, Soon-Ja;Oh, Myung-Hwan;Choi, Sang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1429-1436
    • /
    • 1994
  • We have prepared Ba0.5Sr0.5TiO3 thin films on Si substrate without buffer layer. Deposition was carried out by off-axis rf magnetron sputtering method using Ba0.5Sr0.5TiO3 stoichiometric target. The substrate temperature was changed from 40$0^{\circ}C$ to $700^{\circ}C$ during deposition. As the substrate temperature increased, relative intensity of (110) peak increased up to $600^{\circ}C$, however preferred orientation changed from (110) to (h00) beyond $650^{\circ}C$ of substrate temperature. Deposited films showed microstructures with fine grains whose diameters are less than 100 nm, and columnar structure was observed in the cross-sectional SEM micrograph. AES depth profile showed no significant diffusion at the interfacial reaction area. The effective dielectric constant of films showed maximum value at $600^{\circ}C$, and the leakage current increased with increasing substrate temperature, which may be ascribed to the crystallization of amorphous phases at grain boundary.

  • PDF

The Effect of N2 Gas Doping on Sb2Te3Thin Film for PRAM Recording Layer (PRAM 기록막용 Sb2Te3 박막의 질소 첨가에 대한 영향)

  • Bae, Jun-Hyun;Cha, Jun-Ho;Kim, Kyoung-Ho;Kim, Byung-Geun;Lee, Hong-Lim;Byeon, Dae-Seop
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.276-279
    • /
    • 2008
  • In this research, properties of $N_2$-doped $Sb_2Te_3$ thin film were evaluated using 4-point probe, XRD and AFM. $Sb_2Te_3$ material has faster crystallization rate than $Ge_2Sb_2Te_5$, but sheet resistance difference between amorphous and crystallization state is very low. This low sheet resistance difference decreases sensing margin in reading operation at PRAM device operation. Therefore, in order to overcome this weak point, $N_2$ gas was doped on $Sb_2Te_3$ thin film. Sheet resistance difference between amorphous and crystallized state of $N_2$-doped $Sb_2Te_3$ thin film showed about $10^4$ times higher than Un-doped $Sb_2Te_3$ thin film because of the grain boundary scattering.

Electrical, Optical, and Electrochemical Corrosion Resistance Properties of Aluminum-Doped Zinc Oxide Films Depending on the Hydrogen Content

  • Cho, Soo-Ho;Kim, Sung-Joon;Jeong, Woo-Jun;Kim, Sang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.2
    • /
    • pp.116-125
    • /
    • 2018
  • Aluminum-doped zinc oxide (AZO) is a commonly used material for the front contact layer of chalcopyrite $CuInGaSe_2$ (CIGS) based thin film solar cells since it satisfies the requisite optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts have been developed for high-performance CIGS solar cells, and nearly meet the required performance. However, the durability of the cell especially for the corrosion resistance of AZO films has not been studied intensively. In this work, AZO films were prepared on Corning glass 7059 substrates by radio frequency magnetron sputtering depending on the hydrogen content. The electrical and optical properties and electrochemical corrosion resistance of the AZO films were evaluated as a function of the hydrogen content. With increasing hydrogen content to 6 wt%, the crystallinity, crystal size, and surface roughness of the films increased, and the resistivity decreased with increased carrier concentration, Hall mobility, oxygen vacancies, and $Zn(OH)_2$ binding on the AZO surface. At a hydrogen content of 6 wt%, the corrosion resistance was also relatively high with less columnar morphology, shallow pore channels, and lower grain boundary angles.

Effect of Plasma Pretreatment on Superconformal Cu Alloy Gap-Filling of Nano-scale Trenches

  • Mun, Hak-Gi;Lee, Jeong-Hun;Lee, Su-Jin;Yun, Jae-Hong;Kim, Hyeong-Jun;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.53-53
    • /
    • 2011
  • As the dimension of Cu interconnects has continued to reduce, its resistivity is expected to increase at the nanoscale due to increased surface and grain boundary scattering of electrons. To suppress increase of the resistivity in nanoscale interconnects, alloying Cu with other metal elements such as Al, Mn, and Ag is being considered to increase the mean free path of the drifting electrons. The formation of Al alloy with a slight amount of Cu broadly studied in the past. The study of Cu alloy including a very small Al fraction, by contrast, recently began. The formation of Cu-Al alloy is limited in wet chemical bath and was mainly conducted for fundamental studies by sputtering or evaporation system. However, these deposition methods have a limitation in production environment due to poor step coverage in nanoscale Cu metallization. In this work, gap-filling of Cu-Al alloy was conducted by cyclic MOCVD (metal organic chemical vapor deposition), followed by thermal annealing for alloying, which prevented an unwanted chemical reaction between Cu and Al precursors. To achieve filling the Cu-Al alloy into sub-100nm trench without overhang and void formation, furthermore, hydrogen plasma pretreatment of the trench pattern with Ru barrier layer was conducted in order to suppress of Cu nucleation and growth near the entrance area of the nano-scale trench by minimizing adsorption of metal precursors. As a result, superconformal gap-fill of Cu-Al alloy could be achieved successfully in the high aspect ration nanoscale trenches. Examined morphology, microstructure, chemical composition, and electrical properties of superfilled Cu-Al alloy will be discussed in detail.

  • PDF

The Effect of SiO2 addition on Oxidation and Electrical Resistance Stability at High-temperature of P/M Fecralloy Compact (P/M Fecralloy 성형체의 고온산화 및 전기저항 안정성에 미치는 SiO2 첨가 효과)

  • Park, Jin-Woo;Ok, Jin-Uk;Jung, Woo-young;Park, Dong-kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • A metallic oxide layer of a heat-resistant element contributes to the high-temperature oxidation resistance by delaying the oxidation and has a positive effect on the increase in electrical resistivity. In this study, green compacts of Fecralloy powder mixed with amorphous and crystalline silica are oxidized at $950^{\circ}C$ for up to 210 h in order to evaluate the effect of metal oxide on the oxidation and electrical resistivity. The weight change ratio increases as per a parabolic law, and the increase is larger than that observed for Fecralloy owing to the formation of Fe-Si, Fe-Cr composite oxide, and $Al_2O_3$ upon the addition of Si oxide. Si oxides promote the formation of $Al_2O_3$ and Cr oxide at the grain boundary, and obstruct neck formation and the growth of Fecralloy particles to ensure stable electrical resistivity.

Aerodynamic Study on Pneumatic Separation of Grains(I) -An Experimental Study on The Vertical Wind Tunnel- (곡물(穀物)의 공기선별(空氣選別)에 관(關)한 공기동력학적(空氣動力學的) 연구(硏究)(I) -수직풍동(垂直風胴)의 설계(設計)에 관(關)한 실험적(實驗的) 연구(硏究)-)

  • Lee, C.H.;Cho, Y.J.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.272-281
    • /
    • 1989
  • It is desirable for the vertical wind tunnel which can build uniform air flow across the vertical duct to be used for the purpose of the investigation of the aerodynamic properties of grains. This study was conducted to examine how the air velocity profile in the vertical duct is influenced by the various alternations of the elements of the wind tunnel, and to prepare design guidance of the vertical wind tunnel which can be used for investigating aerodynamic properties of grains. In addition, several tests were conducted to locate the test section which can be applicable for determining the terminal velocity of grain. The following conclusions were obtained from the study: 1. The size and the location of the outlet of the plenum chamber should be determined such that the outlet air flow is less affected by the air flow and the back pressure by the side wall of the chamber. 2. The honeycomb was not helpful for attaining uniform air flow in case that the air flow profile at the bottom of the vertical duct is serverely different from the ideal one. 3. Even though considerable pressure drop was resulted from the screens installed within the vertical duct, the screens were helpful for attaining uniform air flow in the duct. 4. It is desirable for the test section to be located at the position that not only the air flow of the duct is not disturbed by the distorted back pressure in the plenum chamber, but also less boundary layer is developed.

  • PDF