• Title/Summary/Keyword: grain boundaries

Search Result 737, Processing Time 0.024 seconds

Template-directed Atomic Layer Deposition-grown $TiO_2$ Nanotubular Photoanode-based Dye-sensitized Solar Cells

  • Yu, Hyeon-Jun;Panda, Sovan Kumar;Kim, Hyeon-Cheol;Kim, Myeong-Jun;Yang, Yun-Jeong;Lee, Seon-Hui;Sin, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.239.1-239.1
    • /
    • 2011
  • Dye sensitized solar cells (DSC) are promising devices for inexpensive, nontoxic, transparent, and large-scale solar energy conversion. Generally thick $TiO_2$ nanoporous films act as efficient photoanodes with their large surface area for absorbing light. However, electron transport through nanoparticle networks causes the slowdown and the loss of electron transport because of a number of interparticle boundaries inside the conduction path. We have studied DSCs with precisely dimension-controlled $TiO_2$ nanotubes array as photoanode. $TiO_2$ nanotubes array is prepared by template-directed fabrication method with atomic layer deposition. Well-ordered nanotubes array provides not only large surface area for light absorbing but also direct pathway for electrons with minimalized grain boundaries. Large enlongated anatase grains in the nanotubes could enhance the conductivity of electrons, but also suppress the recombination with holes through defect sites during diffusion into the electrode. To study the effect of grain boundaries, we fabricated two kinds of nanotubes which have different grain sizes by controlling deposition conditions. And we studied electron conduction through two kinds of nanotubes with different grain structures. The solar cell performance was studied as a function of thickness and grain structures. And overall solar-to-electric energy conversion efficiencies of up to 7% were obtained.

  • PDF

Impedance Properties of Phase-Pure Titanium Dioxide Ceramics Sintered at Different Temperatures

  • Cui, Liqi;Niu, Ruifeng;Wang, Weitian
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.181-185
    • /
    • 2022
  • In this study, phase-pure titanium dioxide TiO2 ceramics are sintered using standard high-temperature solid-state reaction technique at different temperatures (1,000, 1,100, 1,200, 1,300, 1,400 ℃). The effect of sintering temperature on the densification and impedance properties of TiO2 ceramics is investigated. The bulk density and average grain size increase with the increase of sintering temperature. Impedance spectroscopy analysis (complex impedance Z* and complex modulus M*), performed in a broad frequency range from 100 Hz to 10 MHz, indicates that the TiO2 ceramics are dielectrically heterogeneous, consisting of grains and grain boundaries. The complex impedance Z* -plane indicates the resistance of grains of the TiO2 ceramics increases with increasing sintering temperature, while that of grain boundaries develops in the opposing direction. The complex modulus M*-plane shows a grain capacitance that seems to be independent of the sintering temperature, while that of the grain boundaries decreases with increasing sintering temperature. These results suggest that different sintering temperatures have effects on the microstructure, leading to changes in the impedance properties of TiO2 ceramics.

Microstructure and Mechanical Properties of $Al_2$O$_3$/t-ZrO$_2$ Particulate Composites (Al$_2$O$_3$/t-ZrO$_2$ 입자복합체의 미세구조 및 기계적 성질)

  • 심동훈;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.734-741
    • /
    • 1999
  • Al2O3/t-ZrO2 particulate composites were prepared by sintering at 150$0^{\circ}C$ and 1$600^{\circ}C$ for 2h in air and microstructure and mechanical properties of the composites were investigated. Although most ZrO2 particles existed at Al2O3 grain boundaries a few ZrO2 particles within Al2O3 grains. Al2O3 grain growth was depressed due to the pinning effect by ZrO2 particles. During sintering coarsening of intergranular ZrO2 particles occurred as a results of the elimination of ZrO2 intraagglomerate grain boundaries and the coalescence of dragged ZrO2 particles by migrating Al2O3 grain boundries. Changes in mechanical properties of Al2O3 composites were dependant on microstructure of Al2O3 matrix and on size and structure of dispersed ZrO2.

  • PDF

R-curve, erosion and wear of silicon carbide ceramics (탄화규소의 R-curve, 침식 및 마모 특성)

  • 채준혁;조성재;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.139-145
    • /
    • 1998
  • This paper addresses the R-curve properties, wear resistance, and erosion resistance of the two silicon carbide ceramics with different microstructures, i.e. , fine grained SiC and in situ-toughened SiC(IST SIC). Fine grained SiC exhibits a relatively flat R-curve behavior whereas the IST SiC exhibits a increasing R-curve behavior. The increasing R-curve behavior in IST SiC is attributed to relatively weak grain boundaries. The rate of material removal during wear tests and erosion tests was higher for IST SiC than that for fine grained SiC. This is attributed to the weaker grain boundaries in IST SiC than that in fine grained SiC. It is implied that fracture toughness in short crack regime should be taken into consideration in the interpretation of the microscopical material removal process. We show that the higher the strength of grain boundaries is, the higher wear and erosion resistances are.

  • PDF

Magnetic NDE for Sensitization of Inconel 600 Alloy

  • Kikuchi, Hiroaki;Sumimoto, Takaki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.348-351
    • /
    • 2013
  • Inconel 600 alloy, Ni base alloy, is widely used for steam generator tubings where sensitization occurs at grain boundaries and sensitization will induce tubing failures. This alloy has usually paramagnetic property, however, it transforms into ferromagnetic property along grain boundaries when sensitization occurs: this means NDE using magnetism for sensitization is possible. Therefore, in this study, Inconel 600 alloys were heat treated at 873 K from 0 to 400 hours so as to generate sensitization and their magnetic properties were investigated in detail. The saturation and the residual magnetization increase with increasing heat treatment time and take a maximum. On the other hand, the coercive force decreases with the increase in time of heat treatment. We confirmed that characteristics at only grain boundaries change into ferromagnetic phase by a MFM observation. As a trial for industrial application, heat treated Inconel 600 alloy was scanned by a magnetic field sensor, and the variations in magnetization were obtained nondestructively. The results indicate a feasibility of magnetic NDE for sensitization of Inconel 600 alloy.

Microstructural Evolution and Recrystallization Behavior Traced by Electron Channeling Contrast Imaging

  • Oh, Jin-Su;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.130-131
    • /
    • 2018
  • Electron channeling contrast imaging (ECCI) is one of the imaging techniques in scanning electron microscopy based on a variation in electron backscattering yield depending on the direction of the primary electron beam with respect to the crystal lattice. The ECCI provides not only observation of the distribution of individual grains and grain boundaries but also identification of the defects such as dislocations, twins, and stacking faults. The ECCI at the interface between recrystallized and deformed region of shot peening treated nickel clearly demonstrates the microstructural evolution during the recrystallization including original grain boundaries, and thus can provide better insight into the recrystallization behavior.

Characteristics of Grain Orientation and Grain Boundaries of the $ZrB_2$-ZrC Composites Densified by Spark Plasma Sintering (방전플라즈마소결법으로 제조된 $ZrB_2$-ZrC 복합체의 결정립 방위분포 및 결정입계의 특성)

  • Shim, Seung-Hwan;Kim, Kyoung-Hun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.914-920
    • /
    • 2001
  • The grain orientation distribution and grain boundary characterization of $ZrB_2$-ZrC composites sintered by a SPS(Spark Plasma Sintering) method, a new sintering technique were analyzed by the EBSP technique and then their crystallographic results have been compared with those of a sintered specimen using a PLS(Pressureless Sintering) method. In the $ZrB_2$-ZrC composite manufactured by SPS, (0001) planes of $ZrB_2$ were oriented in the direction normal to the specimen surface. In the case of PLS, those of $ZrB_2$ were oriented normal to the electron beam. In both cases of PLS and SPS, ZrC grains had the randomly oriented grain structure. The grain boundary characterization showed that low angle grain boundaries in the PLS and SPS processed materials constituted about 10% and 8% of the total number of boundaries, respectively, represented the only slight difference between the proportion of low angle grain boundary. However, in the distribution of CSL(Coincident Site Lattice) boundaries, it was shown the higher proportion of CSL boundaries with $\Sigma$ 3,5,7,9, 11 in the SPS processed material.

  • PDF

Space Charge Effect on Grain Growth Kinetics of Tetragonal Zirconia Polycrystal

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The effect of aliovalent dopents, $Nb_3O_5$ and MnO, on the grain growth kinetics of 12 mol% ceria stabilized tetragonal zirconia polycrystals (Ce-TZP) was studied. All specimens were sintered at $1550^{\circ}C$ for 20 minutes prior to annealing at different temperatures to study grain growth kinetics. Grain growth kinetics of Ce-TZP and 1 mol% $Nb_2O_5$ doped Ce-TZP (Ce-TZP/$Nb_3O_5$) during annealing at 1475, 1550, and $1600^{\circ}C$ adequately matched with square law $(D^2-D_\;o^2=k_at)$. However, grain growth in 1 mol% MnO suppressed grain growth in Ce-TZP by drag force exerted by $Mn^{+2}$ ions which segregated strongly to the positively-charged grain boundaries of Ce-TZP, $Nb_2O_5$ enhanced grain growth by increasing the concentration of vacancies of $Zr^{+4}$ ion and $Ce^{+4}$ ions. Surface analysis with X-ray photoelectron spectroscopy (XPS) showed the segregation of Mn+2 ions to grain boundaries. The kinetics of grain growth obtained in the base Ce-TZP and the Ce-TZPs with the aliovalent dopants were examined in the context of impurity drag effect and space charge effect.

  • PDF

Role of CaO in the Sintering of 12Ce-TZP Ceramics (12Ce-TZP 세라믹스의 소결에서의 CaO의 역할)

  • 박정현;문성환;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.265-272
    • /
    • 1992
  • Role of CaO in the sintering of 12Ce-TZP ceramics was studied. The addition of small amounts of CaO increase the densification rate of 12Ce-TZP by altering lattice defect structure and the diffusion coefficient of the rate controlling species, namely cerium and zirconium cations. CaO also inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of solute at the grain boundaries, causing a decrease in the grain boundary mobility. The segregation of calcium was revealed by AES study.

  • PDF