• Title/Summary/Keyword: grain boundaries

Search Result 736, Processing Time 0.031 seconds

Effect of serrated grain boundary on stress corrosion cracking of Alloy 600

  • Kim, H.P.;Choi, M.J.;Kim, S.W.;Kim, D.J.;Lim, Y.S.;Hwang, S.S.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1131-1137
    • /
    • 2018
  • The effect of a serrated grain boundary on stress corrosion cracking (SCC) of Alloy 600 was investigated in terms of improvement of SCC resistance. Serrated grain boundaries and straight grain boundaries were obtained by controlled heat treatment. SCC cracks preferentially initiated and grew at grain boundaries normal to the tensile loading axis. Resolved tensile stress normal to the grain boundary was lower in serrated grain boundaries compared to straight grain boundaries. The specimen with serrated grain boundaries showed higher SCC resistance than that with straight grain boundaries due to a lower resolved tensile stress normal to the grain boundary.

NONUNIFORMITY OF GRAIN BOUNDARIES IN ZnO VARISTORS (ZnO 바리스터에서 입계의 전기적 불평등성에 관한 연구)

  • ;He Jin-Liang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.98-101
    • /
    • 1997
  • The nonuniformity of electrical characteristics of grain boundaries in ZnO varistors wei\ulcorner systematically analyzed. The high nonuniformity exist in barrier voltages and nonlinearity coefficients among different grain boundaries. The barrier voltages have normal distributions, only a few grain boundaries were electrically active, and the grain boundaries can be simply classified into good, bad, and ohmic ones according to the electrical characteristics of grain boundaries. The average barrier voltage is equal to 3.3 V by direct method, but it is only 2.3 V by indirect method. There is a high difference between the barrier voltages by direct and indirect measurement methods. The A1$_2$O$_3$ dopants affect the electrical characteristics of grain boundaries by changing the electron status In grain boundary and intragrain.

  • PDF

Efficiency Improvement of Polycrystalline Silicon Solar Cells using a Grain boundary treatment (결정입계 처리에 따른 다결정 실리콘 태양전지의 효율 향상)

  • 김상수;김재문;임동건;김광호;원충연;이준신
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1034-1040
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. Grain boundaries acted as potential barriers as well as recombination centers for the photo-generated carriers. To reduce these effects of the grain boundaries we investigated various influencing factors such as emitter thickness thermal treatment preferential chemical etching of grain boundaries grid design contact metal and top metallization along boundaries. Pretreatment in $N_2$atmosphere and gettering by POCl$_3$and Al were performed to obtain multicrystalline silicon of the reduced defect density. Structural electrical and optical properties of slar cells were characterized before and after each fabrication process. Improved conversion efficiencies of solar cell were obtained by a combination of pretreatment above 90$0^{\circ}C$ emitter layer of 0.43${\mu}{\textrm}{m}$ Al diffusion in to grain boundaries on rear side fine grid finger top Yb metal and buried contact metallization along grain boundaries.

  • PDF

Fabrication and Characterization of Polycrystalline Silicon Solar Cells using Preferential Etching of Grain Boundaries (결정입계의 선택적 식각을 이용한 다결정 규소 태양전지의 제작과 특성)

  • Kim, Sang-Su;Kim, Cheol-Su;Lim, Dong-Gun;Kim, Do-Young;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1430-1432
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. To reduce these effects of the grain boundaries, we investigated various influencing factors such as preferential chemical etching of grain boundaries, grid design, transparent conductive thin film, and top metallization along grain boundaries. Pretreatment in $N_2$ atmosphere and gettering by $POCl_3$ and Al were performed to obtain polycrystalline silicon of the reduced defect density. Structural, electrical, and optical properties of solar cells were characterized. Improved conversion efficiencies of solar cell were obtained by a combination of Al diffusion into grain boundaries on rear side, fine grid finger, top Yb metal grid on Cr thin film of $200{\AA}$ and buried contact metallization along grain boundaries.

  • PDF

Radiation induced grain boundary segregation in ferritic/martensitic steels

  • Xia, L.D.;Ji, Y.Z.;Liu, W.B.;Chen, H.;Yang, Z.G.;Zhang, C.;Chen, L.Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.148-154
    • /
    • 2020
  • The radiation induced segregation of Cr at grain boundaries (GBs) in Ferritic/Martensitic steels was modeled assuming vacancy and interstitialcy diffusion mechanisms. In particular, the dependence of segregation on temperature and grain boundary misorientation angle was analyzed. It is found that Cr enriches at grain boundaries at low temperatures primarily through the interstitialcy mechanism while depletes at high temperatures predominantly through the vacancy mechanism. There is a crossover from Cr enrichment to depletion at an intermediate temperature where the Cr:Fe vacancy and interstitialcy diffusion coefficient ratios intersect. The bell-shape Cr enrichment response is attributed to the decreasing void sinks inside the grains as temperature rises. It is also shown that low angle grain boundaries (LAGBs) and special Σ coincidence-site lattice (CSL) grain boundaries exhibit suppressed radiation induced segregation (RIS) response while high angle grain boundaries (HAGBs) have high RIS segregation. This different behavior is attributed to the variations in dislocation density at different grain boundaries.

Stucture and Intergranular Segregation of WC/WC Grain Boundaries in WC-Based Cemented Carbides (WC기 초경합금중 WC/WC界面의 구조와 입계편석)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.612-618
    • /
    • 2000
  • The WC/WC grain boundary structure and intergranular segregation in WC-Co and WC-VC-Co cemented carbides were investigated by high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy in order to elucidate whether contiguous boundaries were present or not at the atomic level. Some grain boundaries were separated by liquid phase, while others were contiguous at the atomic level. Cobalt was found to be segregated to WC/WC grain boundaries in WC-Co. Cobalt and vanadium were co-segregated to grain boundaries in WC-VC-Co. The segregation width in both materials was about 6 nm. These results suggest that the vanadium present in contiguous boundaries acts as an effective barrier to the migration of boundaries during sintering and annealing. This could explain the grain growth inhibiting mechanism of VC added to WC-Co.

  • PDF

Formation Process and Structure of Lamellar Grain Boundaries in Titanium Rich TiAl Intermetallics

  • Han, Chang-Suk;Lim, Sang-Yeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.13-16
    • /
    • 2016
  • Morphology and formation processes of lamellar grain boundaries in titanium rich binary TiAl intermetallics were studied. TiAl alloys containing aluminum content of 44 to 48 at.% were induction-heated to 1723 K followed by helium-gas-quenching at various temperatures. For the Ti-44%Al, few lamellae were observed in samples quenched from higher than 1473 K. Although small peaks of beta phase were detected using X-ray diffraction, only the ordered hexagonal phase (${\alpha}_2$) with clear APB contrast was observed in TEM observation. For the Ti-48 at.%Al alloy, almost no lamellar structure, and straight grain boundaries were observed in samples quenched from higher than 1623 K. The formation of lamellae along grain boundaries was observed in the sample quenched from 1573 K. The fully lamellar microstructures with serrated boundaries were observed in samples quenched from lower than 1473 K. It was found that the formation of ${\gamma}$ platelets took place at higher temperatures in Ti-48 at.%Al than in Ti-44 at.%Al. Although the size of the serration is different, serrated lamellar grain boundaries could be obtained for all alloy compositions employed. The serration appeared to be due to the grain boundary migration induced by precipitation and growth of ${\gamma}$. Differences in transformation characteristics with aluminum content are discussed.

Grain Boundaries Imaged by Integration of Sobel Filtered Scanning Transmission Electron Micrographs

  • Kang, Min-Chul;Oh, Jinsu;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.132-133
    • /
    • 2018
  • One of the most important factors determining the properties of a material is its grain size. However, unclear grain boundaries in the image hinder an accurate measurement of grain size. We demonstrate that grain boundaries existing in the images obtained by scanning transmission electron microscopy (STEM) can be clearly distinguished by applying a Sobel filter to a tilting series of STEM images of a hydrogenation-disproportionation-desorption-recombination processed Nd2Fe14B magnet sample.

Grain Boundary Characteristics and Stress-induced Damage Morphologies in Sputtered and Electroplated Copper Films (스퍼터링 및 전기 도금으로 제조된 구리 박막에서의 표면 결함에 미치는 결정립계의 영향)

  • Park, Hyun;Hwang, Soo-Jung;Joo, Young-Chang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.4-4
    • /
    • 2003
  • Various Cu films were fabricated using sputtering and electroplating with and without additive, and their surface damages after annealing were investigated. After annealing at 43SoC, the difference between damage morphologies of the films was observed. In some films stress-induced grooves along the grain boundaries were observed, while in the others voids at the grain boundary triple junctions were observed. It was also observed that the stress-induced groove was formed along the high energy grain boundaries. It was found out that the difference of the morphologies of surface damages in Cu films depends on not process type but grain boundary characteristics. To explain the morphological difference of surface damages, a simple parameter considering the contributions of grain structures and grain boundary characteristics to surface and grain boundary diffusions is suggested. The effective grain boundary area, which is a function of grain size, film thickness and the fraction of high energy grain boundaries, played a key role in the morphological difference.

  • PDF

Critical currents across grain boundaries in YBCO : The role of grain boundary structure

  • Miller Dean J.;Gray Kenneth E.;Field Michael B.;Kim, Dong-Ho
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Measurements across single grain boundaries in YBCO thin films and bulk bicrystals have been used to demonstrate the influence of grain boundary structure on the critical current carried across the grain boundary. In particular, we show that one role of grain boundary structure is to change the degree of pinning along the boundary, thereby influencing the critical current. This effect can be used to explain the large difference in critical current density across grain boundaries in thin films compared to that for bulk bicrystal. These differences illustrate the distinction between the intrinsic mechanism of coupling across the grain boundary that determines the maximum possible critical current across a boundary and the measured critical current which is limited by dissipation due to the motion of vortices.

  • PDF