• Title/Summary/Keyword: grain angle

Search Result 255, Processing Time 0.025 seconds

The Effects of Grain Boundary Structures on Mechanical Properties in Nanocrystalline Al Alloy

  • Jin Man Jang;Wonsik Lee;Se-Hyun Ko
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.971-975
    • /
    • 2021
  • This study investigates the effects of grain boundary structures on mechanical properties of nanocrystalline Al-0.7Mg-1.0Cu alloy using nanoindentation system. Grain boundary structure transforms to high angle grain boundaries from low angle ones with increase of heat treatment temperature and the transformation temperature is about 400℃. Young's modulus and hardness are higher in sample with low angle grain boundaries, while creep length is larger in sample with high angle ones. These results indicate that progress of plastic deformation at room temperature is more difficult in sample with low angle ones. During compression test at 200℃, strain softening occurs in all samples. However, yield strength in sample with low angle grain boundaries is higher twice than that with high angle ones due to higher activation energy for grain boundary sliding.

Effect of Grain Angle on Bending Properties of Pinus densiflora (소나무재의 휨 가공성에 미치는 섬유경사각의 영향)

  • Kim, Jung-Hwan;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2001
  • In this study, it was examined the characteristics of bending property of red pine(Pinus densiflora S, et Z.) related to slope of grain. At first, we have investigated the characteristics of wood species for bending property. At second, it was examined the relationships between grain angle and its related bending property. Specimens were made following to grain angle $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$, respectively. Dimension of wood materials was $10mm(T){\times}20mm(R){\times}350mm(L)$. Microwave irradiation time for bending process was 30, 60, 90, 120 seconds. The result of this study were as follows ; 1. Grain angle of wood was closely related to Young's modulus on bending process. In the process of bending with various grain angle, wood bending was easily proceed on the high grain angle range. 2. However, the strength of bent wood was very weak when the grain angle was high. Therefore, it was considered suitable grain angle for bending was existed. 3. The characteristics of wood properties for wood bending were very different among wood species.

  • PDF

Study on the Characteristics and Separating Performance of Oscillating Sieve for Optimization of Separating Losses of Combine (콤바인 선별손실(選別損失) 적정화(適正化)를 위(爲)한 요동(揺動)체의 특성(特性)과 선별성능(選別性能)에 관한 연구(硏究))

  • Kim, Sang Hun;Nam, Sang Il;Ryu, Su Nam
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.48-57
    • /
    • 1984
  • To analyze the grain transport velocity, which is valuable for optimizing the separation losses, an oscillating appratus for sieve was designed. The grain transport velocity was measured in each combination of three amplitude levels, three rpm levels and four projection angle levels. To analyze the grain transport velocity theortically, two computer programs were developed. And the results from experiment and theoretical analysis were compared. 1. The grain transport velocity was increased with the projection angle of oscillating sieve. Especially when the projection angle is higher than $45^{\circ}$ the grain transport velocity on the flat-plate was not increased but on the racked surface was increased persistently. 2. The grain transport velocity was increased linearly with the frequency of oscillating motion. The speed of driving link must be higher than 350 rpm at 24mm amplitude, 250 rpm at 36 mm amplitude to transport the grain efficiently. 3. The grain transport velocity was increased with the amplitude of oscillating motion. But if the amplitude was smaller than interval of racks, the grain on the racked surface was not transported, even though the projection angle or the speed of revolutionary link was increased. 4. The transport characteristics of a grain varied with the amplitude and projection angle. Especially in the range of 1.5 < K < 2.3 at $45^{\circ}$ projection angle the transportation of grain was successful and the grain motion consisted of sliding movement (forward, backward) and jumping movement, which is considered recommendable for separating process of a combine sieve. 5. The results from theoretical analysis were approximately in accord with that from experiment.

  • PDF

Radiation induced grain boundary segregation in ferritic/martensitic steels

  • Xia, L.D.;Ji, Y.Z.;Liu, W.B.;Chen, H.;Yang, Z.G.;Zhang, C.;Chen, L.Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.148-154
    • /
    • 2020
  • The radiation induced segregation of Cr at grain boundaries (GBs) in Ferritic/Martensitic steels was modeled assuming vacancy and interstitialcy diffusion mechanisms. In particular, the dependence of segregation on temperature and grain boundary misorientation angle was analyzed. It is found that Cr enriches at grain boundaries at low temperatures primarily through the interstitialcy mechanism while depletes at high temperatures predominantly through the vacancy mechanism. There is a crossover from Cr enrichment to depletion at an intermediate temperature where the Cr:Fe vacancy and interstitialcy diffusion coefficient ratios intersect. The bell-shape Cr enrichment response is attributed to the decreasing void sinks inside the grains as temperature rises. It is also shown that low angle grain boundaries (LAGBs) and special Σ coincidence-site lattice (CSL) grain boundaries exhibit suppressed radiation induced segregation (RIS) response while high angle grain boundaries (HAGBs) have high RIS segregation. This different behavior is attributed to the variations in dislocation density at different grain boundaries.

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

Dislocation structure in hot-pressed polycrystalline $TiB_{2}$ (고온가압성형된 다결정 $TiB_{2}$내에서 전위구조)

  • Kwang Bo Shim;Brian Ralph;Keun Ho Auh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.194-202
    • /
    • 1996
  • Transmission electron microscopy has been used to characterize the dislocation structure in hot-pressed titanium diboride. The thin foil samples were prepared by the conventional ion beam thinning technique and reveal the main features associated with the dislocations ; low-angle grain boundaries with dislocation arrays, high-angle grain boundaries with ledges/steps on the boundary planes. The ledges/steps on the grain boundaries were characterized as the origin of defect structures such as dislocation formation or crack propagation near grain boundaries. A fraction of the high angle grain boundaries contained periodic arrays of grain boundary dislocations. The Burger's vectors of the dislocations in the $TiB_{2}$specimens were determined.

  • PDF

Decohesion of <100> Symmetric Tilt Copper Grain Boundary by Tensile Load Using Molecular Dynamics Simulation (경사진 <100> 결정립계의 계면분리 거동에 관한 분자동역학 전산모사)

  • Nguyen, Thao;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.38-41
    • /
    • 2009
  • Debonding behavior of symmetric tilt bicrystal interfaces with <100> misorientation axis is investigated through molecular dynamics simulations. FCC single crystal copper is considered in each grain and the model is idealized as a grain boundary under mechanical loading. Embedded-Atom Method potential is chosen to calculate the interatomic forces between atoms. Constrained tensile deformations are applied to a variety of misorientation angles in order to estimate the effect of grain boundary angle on local peak stress. A new parameter of symmetric grain-boundary structure is introduced and refines the correlation between grain boundary angle and local peak stress.

  • PDF

Effects of seed orientation on the growth behavior of single grain REBCO bulk superconductors

  • Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.9-13
    • /
    • 2017
  • This study presents a simple method to control the seed orientation which leads to the various growth characteristics of a single grain REBCO (RE: rare-earth elements) bulk superconductors. Seed orientation was varied systematically from c-axis to a-axis with every 30 degree rotation around b-axis. Orientations of a REBCO single grain was successfully controlled by placing the seed with various angles on the prismatic indent prepared on the surface of REBCO powder compacts. Growth pattern was changed from cubic to rectangular when the seed orientation normal to compact surface was varied from c-axis to a-axis. Macroscopic shape change has been explained by the variation of the wetting angle of un-reacted melt depending on the interface energy between $YBa_2Cu_3O_{7-y}$ (Y123) grain and melt. Higher magnetic levitation force was obtained for the specimen prepared using tilted seed with an angle of 30 degree rotation around b-axis.

No Tilt Angle Dependence of Grain Boundary on Mechanical Strength of Chemically Deposited Graphene Film

  • Kim, Jong Hun;An, Sung Joo;Lee, Jong-Young;Ji, Eunji;Hone, James;Lee, Gwan-Hyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.506-512
    • /
    • 2019
  • Although graphene has been successfully grown in large scale via chemical vapor deposition (CVD), it is still questionable whether the mechanical properties of CVD graphene are equivalent to those of exfoliated graphene. In addition, there has been an issue regarding how the tilt angle of the grain boundary (GB) affects the strength of graphene. We investigate the mechanical properties of CVD graphene with nanoindentation from atomic force microscopy and transmission electron microscopy. Surprisingly, the samples with GB angles of 10° and 26° yielded similar fracture stresses of ~ 80 and ~ 79 GPa, respectively. Even for samples with GB exhibiting a wider range, from 0° to 30°, only a slightly wider fracture stress range (~ 50 to ~ 90 GPa) was measured, regardless of tilt angle. The results are contrary to previous studies that have reported that GBs with a larger tilt angle yield stronger graphene film. Such a lack of angle dependence of GB can be attributed to irregular and well-stitched GB structures.

Relationship between Compression Strength Parallel to Grain and Anatomical Characters in Pinus densiflora S. et. Z. (소나무의 해부학적 특성과 종압축강도와의 관계)

  • Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.27-32
    • /
    • 1997
  • This study was carried out to find the relationship between anatomical characters and compression strength parallel to grain of Pinus densiflora S. et. Z., the representative conifer species in Korea. The results were as follows ; 1. The compression strength parallel to grain increased with the increase of tracheid length and wall thickness. The strength, however, decreased with the increase of height of uniseriate ray and microfibril angle. 2. The major factors affecting compression strength parallel to grain in heartwood were radial diameter of latewood tracheid and wall thickness of earlywood tracheid but length and tangential diameter of latewood tracheid were the important factors in sapwood.

  • PDF