• Title/Summary/Keyword: gradually varied flow

Search Result 30, Processing Time 0.024 seconds

Analysis of Gradually Varied Flow Considering Relative Depth in Circular Pipe (원형관에서 상대수심을 고려한 점변류 해석)

  • Kim, Minhwan;Park, Junghee;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2007
  • When we use the circular pipes for wastewater and storm water, we should be known the characteristics of the flow for accurate design. To elevate the design accuracy, we want to know the profile of flow. The roughness coefficient in the Manning equation is constant, but in actuality changed with the relative depth in circular pipe. This study was conducted to calculate the relative normal depth in changing the roughness coefficient (named relative roughness coefficient) with the relative depth in the analysis of gradually varied flow in the circular pipe by Newton-Raphson method. We performed the analysis of gradually varied flow using the relative normal depth and the relative roughness coefficient. We presented the 12 flow profiles with the relative depth and the relative roughness coefficient in circular pipe. The flow classification considering relative depth in circular pipe is available to analyse gradually varied flow profiles.

Markov Chain Model for Synthetic Generation by Classification of Daily Precipitaion Amount into Multi-State (강수계열의 상태분류에 의한 Markov 연쇄 모의발생모형)

  • Kim, Ju-Hwan;Park, Chan-Yeong
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.155-166
    • /
    • 1996
  • A finite element model for simulating gradually and rapidly varied unsteady flow in open channel is developed based on dynamic wave equation using Petrov-Galerkin method. A matrix stability analysis shows the selective damping of short wave lengths and excellent phase accuracies achived by Petrov-Galerkin method. Whereas the Preissmann scheme displays less selective damping and poor phase accuracies, and Bubnov-Galerkin method shows nondissipative characteristics whicn causes a divergence problem in short wave length. The analysis also shows that the Petrov-Galerkin method displays the desirable combination of selective damping of high frequency progressive waves over a wide range of Courant number and good phase accuracy at low Courant number. Therefore, the Petrov-Galerkin can be effectively applied to gradually and rapidly varied unsteady flow.

  • PDF

Finite Element Analysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel : II. Applications (개수로내의 점변 및 급변 부정류에 대한 유한요소해석 : II. 적용예)

  • Han, Geon-Yeon;Park, Jae-Hong;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.35-44
    • /
    • 1997
  • Petrov-Galerkin finite element model for analyzing dynamic wave equation is applied to gradually and rapidly varied unsteady flow. The model in verified by applying to hydraulic jump, nonlinear disturbance propagation in frictionless horizontal channel and dam-break analysis. It shows stable and accurate results compared with analytical solutions for various cases. The model in applied to a surge propagation in a frictionless horizontal channel. Three-dimensional water surface profiles show that the computed result converges to the analytical one with sharp discontinuity. The model is also applied to the Taehaw River to analyze unsteady floodwave propagation. The computed results have good agreements with those of DWOPER model in terms of discharge and stage hydrographs.

  • PDF

Development of 2D Finite Element Model for the Analysis of Shallow Water Flow (천수흐름 해석을 위한 2차원 유한요소모형의 개발)

  • Seo, Il Won;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.199-209
    • /
    • 2010
  • A finite element model for analyzing surface water flow was developed. Shallow water equation was discretized and solved by Galerkin and Newton-Raphson method. Triangular or rectangular elements can be mixed together to construct meshes. The algebraic equation was solved by frontal method which is very efficient in finite element problem. The developed model was applied to rectangular meandering channel with two bends and transverse velocities and water depth distributions were examined. High velocity was located near the inner bank at the apexes of the bends and velocity distribution was symmetrical about the centerline at the midsection of two bend and super elevation also occurred. Simulation results showed very good agreement with measured data. Another numerical simulation was carried out in mild, steep, adverse and abrupt bottom change slope and channels with weir. 12 water surface profiles of gradually varied flow were correct in terms of hydraulic interpretation.

Water Surface Profile Computations at Irrigation Channel Networks (관개용수로에서의 수면곡선 계산)

  • 김현준;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.114-120
    • /
    • 1988
  • A water surface profile computation model using a standard step procedure was developed for gradually varied flow at an irrigation channel network. Flow characteristics ab Banweol district near Suweon were field monitored during irrigation periol of 1987. The model was applied to the main system at the district and the simulation results were compared to the field data. The results are sumrnarized as follows ; 1. The simulated water surface profiles from the model were in good agreement with the measured water surface profiles at different flow rates. 2. The model applicability for defining a stage-discharge relationship at a channel reach was demonstrated with reasonable accuracy when water stage and friction factor were given. 3. The roughness coefficient was found to be a major factor sigrificantly affecting computed water surface profile among a few physical input parameters for the model.

  • PDF

Flood Influence Analysis in the downstream of Sung-Ju Dam using HEC-RAS Model (HEC-RAS를 이용한 성주댐 하류부의 홍수영향 분석)

  • Kim, Sun-Joo;Jee, Yong-Geun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.105-108
    • /
    • 2002
  • In this study, flood influence analysis in the downstream of Sung-Ju dam was simulated using HEC-RAS model. Input data for the simulation was which measured water level, water velocity, stream section etc. HEC-RAS model could be applied to steady flow or gradually varied flow in natural or artificial stream. HEC-RAS model which can simulate real-time changing water level and compute water surface curve was supplied to show the standard influent amount of Sung-Ju dam. Through this study the submerged damage of Sung-Ju dam's downstream would be minimized.

  • PDF

A Numerical Analysis of River-bed Variation in Alluvial Stream (충적하천(沖積河川)의 하상변동(河床變動)에 관한 수치해석(數値解析))

  • Park, Jung Eng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 1984
  • This paper is to exhibit the numerical analysis of sediment transport in the slowly varing flow and the sediment transport relation between the steady and the unsteady flow in the alluvial stream. The gradually varied flow of alluvial stream and the sediment transport are very complicated physical phenomen. Therefore the mathematical modeling is needed to be established. Linear implicit means of modified indirect method are applied to sediment transport by numerical analysis instead of the conception of steady flow in order to decrease errors. Further more, this study has purpose on reasonable prediction of the river-bed variation by way of this numerical method.

  • PDF

Flow Analysis of Profile Extrusion by a Modified Cross-sectional Numerical Method

  • Seo, Dongjin;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.103-110
    • /
    • 2000
  • Flow analysis of profile extrusion is essential for design and production of a profile extrusion die. Velocity, pressure, and temperature distribution in an extrusion die are predicted and compared with the experimental results. A two dimensional numerical method is proposed for three dimensional analysis of the flow field within the profile extrusion die by applying a modified cross-sectional numerical method. Since the cross-sectional shape of the die is varied gradually, it is assumed that the pressure is constant within a cross-sectional plane that is perpendicular to the flow direction. With this assumption, the velocity component in the cross-sectional direction is neglected. The exact cross-sectional shape at any position is calculated based on the geometry of standard cross-sections. The momentum and energy equations are solved with proper boundary conditions at a cross-section and then the same calculation is carried out for the next cross-section using the current calculated values. An L-shaped profile extrusion die is produced and employed for experimental investigation using a commercially available polypropylene. Numerical prediction for the varying cross-sectional shape provides better results than the previous studies and is in good agreement with the experimental results.

  • PDF

Estimation of Suitable Flow Needs for Maintaining Fish Habitat Conditions Using Water Quantity and Quality Simulation (수량.수질 모의치를 이용한 어류 서식 조건 유지에 필요한 적정 유량 산정)

  • Kim, Gyu-Ho;Jo, Won-Cheol;Jeon, Byeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.3-14
    • /
    • 2000
  • The primary objective of this study is to estimate the suitable flow in need for conservation and restoration of the fish habitat in running water ecosystem, which has very important status in the instream flow for stream environment. Year, monthly low flows are estimated to properly maintain the fish habitat. Water depth and velocity are simulated, and also water temperature and Dissolved Oxygen(DO) are predicted at gradually varied flow using estimated low flows. These simulated conditions for each low flow are graphically compared with the requirements to maintain fish habitat at each life stage. These processes were applied to 3 riffle transects located at Dalcheon(Dal stream) in the South Han river. Pirami (Zacco platypus) was selected as a representative fish species in Dalcheon. It was shown that the suitable flow for maintaining the representative fish habitat at each life stage depends on hydraulic conditions rather than water quality conditions, and the flow ranges from the 10-year minimum low flow to consecutive 7-day 2.33-year low flow.w flow.

  • PDF

A continuous-flow and on-site mesocosm for ocean acidification experiments on benthic organisms

  • Kim, Ju-Hyoung;Kang, Eun Ju;Kim, Keunyong;Kim, Kwang Young
    • ALGAE
    • /
    • v.33 no.4
    • /
    • pp.359-366
    • /
    • 2018
  • Mesocosm experiments conducted for ecological purposes have become increasingly popular because they can provide a holistic understanding of the biological complexities associated with natural systems. This paper describes a new outdoor mesocosm designed for $CO_2$ perturbation experiments of benthos. Manipulated the carbonate chemistry in a continuous flow-through system can be parallelized with diurnal changes, while irradiance, temperature, and nutrients can vary according to the local environment. A target hydrogen ion activity (pH) of seawater was sufficiently stabilized and maintained within 4 h after dilution, which was initiated by the ratio of $CO_2$-saturated seawater to ambient seawater. Specifically, pH and $CO_2$ partial pressure ($pCO_2$) levels gradually varied from 8.05-7.28 and $375-2,691{\mu}atm$, respectively, over a range of dilution ratios. This mesocosm can successfully manipulate the pH and $pCO_2$ of seawater, and it demonstrates suitability for ocean acidification experiments on benthic communities.