한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
/
pp.834-841
/
1996
Egg production in Korea is becoming automated with a large scale farm. Although many operations in egg production have been and cracks are regraded as a critical problem. A computer vision system was built to generate images of a single , stationary egg. This system includes a CCD camera, a frame grabber board, a personal computer (IBM PC AT 486) and an incandescent back lighting system. Image processing algorithms were developed to inspect egg shell and to sort eggs. Those values of both gray level and area of dark spots in the egg image were used as criteria to detect holes in egg and those values of both area and roundness of dark spots in the egg and those values of both area and roundness of dark spots in the egg image were used to detect cracks in egg. Fro a sample of 300 eggs. this system was able to correctly analyze an egg for the presence of a defect 97.5% of the time. The weights of eggs were found to be linear to both the projected area and the perimeter of eggs v ewed from above. Those two values were used as criteria to sort eggs. Accuracy in grading was found to be 96.7% as compared with results from weight by electronic scale.
본 논문은 심각한 문제를 일으키고 있는 유해 정보들이 인터넷을 통해 무분별하게 제공되기 때문에 우리의 청소년들이 접근을 차단할 수 있는 시스템의 설계와 구현에 관한 연구이다. 유해 정보를 차단하기 위해 여러 차단 소프트웨어들이 개발되어서 기존의 차단 소프트웨어들은 차단 목록 데이터베이스를 사용해서 목록에 있는 경우 차단을 하거나 등급 표시에 따르도록 한다. 차단 목록 데이터베이스의 지속적인 업 데이트, 등급 표시에 따른 오류나 사전 검열 둥이 문제점으로 나타났다. 이 문제점 해결을 위해 본 논문에서는 사이트 상에서 제공되어지는 내용을 AC 머신을 이용하여 유해 단어를 추출하고 유해 정보 데이터베이스를 이용해서 유해 단어에 가중치를 부여했다. 그 결과로 유해 정보를 포함한 사이트는 90%의 차단 율을 보여 효율적인 시스템으로 판명되었다.
An excavator is a construction machine that can perform various tasks such as trenching, piping, excavating, slope cutting, grading, and rock demolishing. In the 2010s, unmanned construction equipment using ICT technology was continuously developed. In this paper, the path design process was studied to implement the output data of the decision stage, and the path design algorithm was developed. For example, the output data of the decision stage were terrain data around the excavator, excavator mechanism information, excavator hydraulic information, the position and posture of the bucket at key points, the speed of the desired bucket path, and the required excavation volume. The result of the path design was the movement of the hydraulic cylinder, boom arm, bucket, and bucket edge. The core functions of the path design algorithm are the function of avoiding impact during the excavation process, the function to calculate the excavation depth that satisfies the required excavation volume, and the function that allows the bucket to pass through the main points of the excavation process while maintaining the speed of the desired path. In particular, in the process of developing the last function, the node tracking method expressed in the path design table was newly developed. The path design algorithm was verified as this path design satisfied the JCMAS H02 requirement.
The analysis of digital microscopy images plays a vital role in computer-aided diagnosis (CAD) and prognosis. The main purpose of this paper is to develop a machine learning technique to predict the histological grades in prostate biopsy. To perform a multiclass classification, an AI-based deep learning algorithm, a multichannel convolutional neural network (MCCNN) was developed by connecting layers with artificial neurons inspired by the human brain system. The histological grades that were used for the analysis are benign, grade 3, grade 4, and grade 5. The proposed approach aims to classify multiple patterns of images extracted from the whole slide image (WSI) of a prostate biopsy based on the Gleason grading system. The Multichannel Convolution Neural Network (MCCNN) model takes three input channels (Red, Green, and Blue) to extract the computational features from each channel and concatenate them for multiclass classification. Stain normalization was carried out for each histological grade to standardize the intensity and contrast level in the image. The proposed model has been trained, validated, and tested with the histopathological images and has achieved an average accuracy of 96.4%, 94.6%, and 95.1%, respectively.
치매 증상의 진행 지연 및 관리비용의 절감을 위해서는 치매를 조기에 발견하여 관리하는 것이 중요하다. 이에 본 연구에서는 치매와 관련된 인지신경학적 손상을 측정할 수 있는 간단한 그림검사인 도형모사검사를 개발하여, 치매 선별 가능성을 확인하고자 하였다. 또한, 도형모사검사의 이미지 데이터에 대한 기계학습을 통해 검사 채점의 자동화 가능성을 확인하고자 하였다. 이를 위해 270명의 일반 및 손상집단 참가자들에 대하여 도형모사검사, MMSE-DS, 그리고 시계그리기 검사를 수행하였다. 분석 결과, 도형모사검사의 점수는 높은 내적 일치도를 보였을 뿐만 아니라, 다른 두 검사 점수와 유의한 상관을 보여 검사의 타당성을 확인하였다. 세 검사의 치매 선별 정확도를 비교하기 위해 판별분석을 시행한 결과, 다른 두 검사와 비교했을 때 도형모사검사가 일반 및 손상 집단을 각각 90.8% 및 77.1%의 정확도로 예측하여, 집단에 대한 예측 수준이 상대적으로 더 높은 것으로 나타났다. 또한, 신경과 진단을 통한 임상 결과를 통해, MMSE-DS를 통해 선별하지 못했던 치매 사례들을 도형모사검사를 이용하여 선별할 수 있음을 확인하였다. 마지막으로, 도형모사검사의 이미지 데이터를 이용한 기계학습을 수행한 결과, 73.70%의 정확률로 집단을 예측하는 것을 확인하였다. 본 연구는 기존에 사용되어 온 치매 선별 검사의 한계를 보완하여, 시행과 채점이 간편한 새로운 그림검사를 개발하였다는 점에서 의의를 지닌다.
Statement of problem. Luster loss in esthetic anterior ceromer restoration can occur and can be related with rough surface texture. Understanding durability of surface finishing methods like polishing and surface coating have critical importance. Purpose. This study evaluated the effect of tooth brushing and thermal cycling on surface luster of 3 ceromer systems (Artglass, Targis, Sculpture) treated with different surface finishing methods. Material and methods. Seventy-two samples were prepared: 12 for control group Z100, 12 for Artglass, 24 for Targis, and 24 for Sculpture. Half of the Targis and Sculpture were polished according to the manufacturer's recommendation. The rest of the samples were coated with staining and glazing solution for Targis and Sculpture, respectively. All specimens were subjected to 10,000 cycles between $5^{\circ}C\;and\;55^{\circ}C$ with 30 seconds dwell time. Tooth brushing abrasion tests were performed in a customized tooth brushing machine with 500g back and forth for 20,000 cycle. Luster comparisons were based on grading after direct observation, and light reflection area was measured with Image analysis software. Results. All materials showed an decrease in luster grade after thermal cycling and tooth brushing. The post-tooth brushing results revealed that the glazed Sculpture had greater mean luster grade than did any other groups. While, the stained Targis group showed greatest changes after tooth brushing (p < 0.05), polished Targis and Sculpture did not show significant changes. However, glazed Sculpture showed discretely fallen out glaze resin. Conclusion. From the results of this study, all of the ceromer specimens were much glossy than control composite group after tooth brushing. coatings used for Targis and Sculpture had not durability for long term use.
Purpose: This study was conducted to investigate the potential of interactance mode of NIR spectroscopy technology for the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from local greenhouses in three different harvesting seasons (experiments 1, 2, and 3). The fruit attributes were measured at the 6 points on an equator of each sample where the spectral data were collected. The prediction models were developed using the original spectral data and the spectral data sets preprocessed by 20 methods. The performance of the models was compared. Results: In the prediction of SSC, the highest coefficient of determination ($R_{cv}{^2}$) values of the cross-validation was 0.755 (standard error of prediction, SEP=$0.89^{\circ}Brix$) with the preprocessing of normalization with range in experiment 1. The highest coefficient of determination in the robustness tests, $R_{rt}{^2}$=0.650 (SEP=$1.03^{\circ}Brix$), was found when the best model of experiment 3 was evaluated with the data set of experiment 2. The best $R_{cv}{^2}$ for the prediction of firmness was 0.715 (SEP=3.63 N) when no preprocessing was applied in experiment 1. The highest $R_{rt}{^2}$ was 0.404 (SEP=5.30 N) when the best model of experiment 3 was applied to the data set of experiment 1. Conclusions: From the test results, it can be concluded that the interactance mode of VIS/NIR spectroscopy technology has a great potential to measure SSC and firmness of thick-skinned muskmelons.
Stress wave velocity, wave impedance, and stress wave elasticity of small, clear bending specimens of five domestic softwoods (Pinus densiflora, Pinus koraiensis, Chamaecyparis obtusa, Cryptomeria japonica, and Larix leptolepis) and four tropical hardwoods(Kempas, Malas, Taun, and Terminalia) were correlated with static bending modulus of elasticity(MOE) and modulus of rupture(MOR). The degree of correlation between stress wave parameters and static bending properties was dependent on wood species tested. Stress wave elasticity and wave impedance were better predictors for static bending properties than stress wave velocity for each species individually and for softwood or hardwood species taken as a group, even though elasticity and impedance were nearly equally correlated with static bending properties apparently. Based upon the correlation coefficient between stress wave parameters and static properties, stress wave elasticity and wave impedance were found as stress wave parameters which can be used for the purpose of the reliable and successful prediction of bending properties. The degree of correlation between static MOE and MOR was also different according to wood species tested. Static MOE was nearly as well correlated with MOR as was stress wave elasticity. The results of this research are encouraging and can be considered as a basis for further work using full-size lumber. From the results of this study, it was concluded that stress wave measurements could provide useful predictions of static bending properties and was a feasible method for machine stress grading of domestic softwoods and tropical hardwoods tested in this study.
Increasing meat demand in terms of both quality and quantity in conjunction with feeding a growing population has resulted in regulatory agencies imposing stringent guidelines on meat quality and safety. Objective and accurate rapid non-destructive detection methods and evaluation techniques based on artificial intelligence have become the research hotspot in recent years and have been widely applied in the meat industry. Therefore, this review surveyed the key technologies of non-destructive detection for meat quality, mainly including ultrasonic technology, machine (computer) vision technology, near-infrared spectroscopy technology, hyperspectral technology, Raman spectra technology, and electronic nose/tongue. The technical characteristics and evaluation methods were compared and analyzed; the practical applications of non-destructive detection technologies in meat quality assessment were explored; and the current challenges and future research directions were discussed. The literature presented in this review clearly demonstrate that previous research on non-destructive technologies are of great significance to ensure consumers' urgent demand for high-quality meat by promoting automatic, real-time inspection and quality control in meat production. In the near future, with ever-growing application requirements and research developments, it is a trend to integrate such systems to provide effective solutions for various grain quality evaluation applications.
Lohumi, Santosh;Wakholi, Collins;Baek, Jong Ho;Kim, Byeoung Do;Kang, Se Joo;Kim, Hak Sung;Yun, Yeong Kwon;Lee, Wang Yeol;Yoon, Sung Ho;Cho, Byoung-Kwan
한국축산식품학회지
/
제38권5호
/
pp.1109-1119
/
2018
In this paper, we report the development of a nondestructive prediction model for lean meat percentage (LMP) in Korean pig carcasses and in the major cuts using a machine vision technique. A popular vision system in the meat industry, the VCS2000 was installed in a modern Korean slaughterhouse, and the images of half carcasses were captured using three cameras from 175 selected pork carcasses (86 castrated males and 89 females). The imaged carcasses were divided into calibration (n=135) and validation (n=39) sets and a multilinear regression (MLR) analysis was utilized to develop the prediction equation from the calibration set. The efficiency of the prediction equation was then evaluated by an independent validation set. We found that the prediction equation - developed to estimate LMP in whole carcasses based on six variables - was characterized by a coefficient of determination ($R^2_v$) value of 0.77 (root-mean square error [RMSEV] of 2.12%). In addition, the predicted LMP values for the major cuts: ham, belly, and shoulder exhibited $R^2_v$ values${\geq}0.8$ (0.73 for loin parts) with low RMSEV values. However, lower accuracy ($R^2_v=0.67$) was achieved for tenderloin cuts. These results indicate that the LMP in Korean pig carcasses and major cuts can be predicted successfully using the VCS2000-based prediction equation developed here. The ultimate advantages of this technique are compatibility and speed, as the VCS2000 imaging system can be installed in any slaughterhouse with minor modifications to facilitate the on-line and real-time prediction of LMP in pig carcasses.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.