• Title/Summary/Keyword: gradient-descent method

Search Result 238, Processing Time 0.027 seconds

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.

Prarmeter Tuning of Fuzzy Cotroller using Neural Networks System Identifier (신경회로망 시스템 식별기를 이용한 퍼지제어기의 변수동조)

  • 이우영;최흥문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.40-50
    • /
    • 1996
  • By using the neural networks(NN) as system identifier, the on-line self tuning method for fuzzy controller(FC) is proposed. In theis method, the learning of NN is carried out during control operation of FC and the cinsequent parameters of FC is tuned on-line automatically by means of system output errors backpropagated through NN. The Sugeno fuzzy model with constants as consequent parameters is selected for simplifying computation. In procedures of parameter tuning, the gradient descent method is used and the gradient vectors for adjusting the weight of NN are transferred as controller output errors. To evaluate the performance, the proposed method is applied to the inverted pendulum system.

  • PDF

Hybrid Atmospheric Compensation in Free-Space Optical Communication

  • Wang, Tingting;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Since the direct-gradient (DG) method uses the Shack-Hartmann wave front sensor (SH-WFS), based on the phase-conjugation principle, for atmospheric compensation in free-space optical (FSO) communication, it cannot effectively correct high-order aberrations. While the stochastic parallel gradient descent (SPGD) can compensate the distorted wave front, it requires more calculations, which is sometimes undesirable for an FSO system. A hybrid compensation (HC) method is proposed by properly using the DG method and SPGD algorithm to improve the performance of FSO communication. Simulations show that this method can well compensate wave-front aberrations and upgrade the coupling efficiency with few computations, preferable correction results, and rapid convergence rate.

MIMO Fuzzy Reasoning Method using Learning Ability (학습기능을 사용한 MIMO 퍼지추론 방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.175-178
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

  • PDF

Adaptive fuzzy sliding mode control for nonlinear systems (비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.684-688
    • /
    • 1996
  • In this paper, to overcome drawbacks of variable structure control system a self-tuning fuzzy sliding mode control algorithm using gradient descent method is proposed. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to a one-degree of freedom robot arm. The results show that both alleviation of chattering and performance are achieved.

  • PDF

Orthogonal Least Square Approach to Nonstationary Source Separation

  • Choi Heeyoul;Choi Seungjin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.41-44
    • /
    • 2002
  • Blind source separation (BSS) is a fundamental problem that is encountered in many practical applications. In most existing methods, stationary sources are considered higher-order statistics is necessary either explicitly or implicitly. But, many natural signals are nonstationary, and it is possible to perform BSS using only second-order statistics. Our method is based on only second order statistics. The algorithms are developed using the gradient descent method in orthogonality constraint and their performance is confirmed by numerical experiments.

  • PDF

A Gradient Boosting Method for Graph Neural Networks (그래프 신경망에 대한 그래디언트 부스팅 기법)

  • Jang, Eunjo;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.574-576
    • /
    • 2022
  • 최근 여러 분야에서 그래프 신경망(graph neural network, GNN)이 활발히 연구되고 있다. 하지만 지금까지 대부분의 GNN 연구는 단일 GNN 모델의 성능을 향상하는 데 집중되었다. 본 논문에서는 앙상블(ensemble) 기법의 대표적 기법인 그래디언트 부스팅(gradient boosting)을 이용하여 GNN의 앙상블 모델을 만드는 방법을 제안한다. 제안 방법은 앞서 만들어진 GNN의 오차를 경사 하강법(gradient descent)을 이용하여 감소시키는 방향으로 다음 GNN을 생성한다. 이 과정을 반복하여 GNN의 최종 앙상블 모델을 얻는다. 실험에서 GNN의 대표적인 모델인 그래프 합성곱 신경망(graph convolutional network, GCN)에 제안 방법을 적용하여 앙상블 모델을 생성한 결과, 단일 GCN 모델에 비해 노드 분류 정확도가 11.3%p까지 증가하였음을 확인하였다.

A method for optimizing lifetime prediction of a storage device using the frequency of occurrence of defects in NAND flash memory (낸드 플래시 메모리의 불량 발생빈도를 이용한 저장장치의 수명 예측 최적화 방법)

  • Lee, Hyun-Seob
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2021
  • In computing systems that require high reliability, the method of predicting the lifetime of a storage device is one of the important factors for system management because it can maximize usability as well as data protection. The life of a solid state drive (SSD) that has recently been used as a storage device in several storage systems is linked to the life of the NAND flash memory that constitutes it. Therefore, in a storage system configured using an SSD, a method of accurately and efficiently predicting the lifespan of a NAND flash memory is required. In this paper, a method for optimizing the lifetime prediction of a flash memory-based storage device using the frequency of NAND flash memory failure is proposed. For this, we design a cost matrix to collect the frequency of defects that occur when processing data in units of Drive Writes Per Day (DWPD). In addition, a method of predicting the remaining cost to the slope where the life-long finish occurs using the Gradient Descent method is proposed. Finally, we proved the excellence of the proposed idea when any defect occurs with simulation.

Stochastic Gradient Descent Optimization Model for Demand Response in a Connected Microgrid

  • Sivanantham, Geetha;Gopalakrishnan, Srivatsun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.97-115
    • /
    • 2022
  • Smart power grid is a user friendly system that transforms the traditional electric grid to the one that operates in a co-operative and reliable manner. Demand Response (DR) is one of the important components of the smart grid. The DR programs enable the end user participation by which they can communicate with the electricity service provider and shape their daily energy consumption patterns and reduce their consumption costs. The increasing demands of electricity owing to growing population stresses the need for optimal usage of electricity and also to look out alternative and cheap renewable sources of electricity. The solar and wind energy are the promising sources of alternative energy at present because of renewable nature and low cost implementation. The proposed work models a smart home with renewable energy units. The random nature of the renewable sources like wind and solar energy brings an uncertainty to the model developed. A stochastic dual descent optimization method is used to bring optimality to the developed model. The proposed work is validated using the simulation results. From the results it is concluded that proposed work brings a balanced usage of the grid power and the renewable energy units. The work also optimizes the daily consumption pattern thereby reducing the consumption cost for the end users of electricity.

Implementation of adaptive filters using fast hadamard transform (고속하다마드 변환을 이용한 적응 필터의 구현)

  • 곽대연;박진배;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1379-1382
    • /
    • 1997
  • We introduce a fast implementation of the adaptive transversal filter which uses least-mean-square(LMS) algorithm. The fast Hadamard transform(FHT) is used for the implementation of the filter. By using the proposed filter we can get the significant time reduction in computatioin over the conventional time domain LMS filter at the cost of a little performance. By computer simulation, we show the comparison of the propsed Hadamard-domain filter and the time domain filter in the view of multiplication time, mean-square error and robustness for noise.

  • PDF