• Title/Summary/Keyword: gradient-descent method

Search Result 238, Processing Time 0.029 seconds

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF

Grid Voltage-sensorless Current Control of LCL-filtered Grid-connected Inverter based on Gradient Steepest Descent Observer

  • Tran, Thuy Vi;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.380-381
    • /
    • 2019
  • This paper presents a grid voltage-sensorless current control design for an LCL-filtered grid-connected inverter with the purpose of enhancing the reliability and reducing the total cost of system. A disturbance observer based on the gradient steepest descent method is adopted to estimate the grid voltages with high accuracy and light computational burden even under distorted grid conditions. The grid fundamental components are effectively extracted from the estimated gird voltages by means of a least-squares algorithm to facilitate the synchronization process without using the conventional phase-locked loop. Finally, the estimated states of inverter system obtained by a discrete current-type full state observer are utilized in the state feedback current controller to realize a stable voltage-sensorless current control scheme. The effectiveness of the proposed scheme is validated through the simulation results.

  • PDF

A computed torque method incorporating an iterative learning scheme

  • Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1097-1112
    • /
    • 1989
  • An iterative learning control scheme is incorporated to the computed torque method as a means to enhance the accuracy and the flexibility. A learning rule is constructed by utilizing a gradient descent algorithm and data compressing techniques are illustrated. Computer simulation results show a good performance of the scheme under a relatively high speed and a heavy payload condition.

  • PDF

Design of Generalized Predictive Controller Using Wavelet Neural Networks for Chaotic Systems (웨이블릿 신경 회로망을 이용한 혼돈 시스템의 일반형 예측 제어기 설계)

  • Park, Sang-Woo;Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • In this paper, we propose a novel predictive control method, which uses a wavelet neural network as a predictor, for the control of chaotic systems. In our method, we use the gradient descent method for training the parameter of a wavelet neural network. The control signals are directly obtained by minimizing the difference between a reference signal and the output of a wavelet neural network. To verify the efficiency of our method, we apply it to the Doffing and the Henon system, which are a representative continuous and discrete time chaotic system respectively, and compare with the results of generalized predictive control using multi-layer perceptron.

Fuzzy Model Identification using a mGA Hybrid Schemes (mGA의 혼합된 구조를 사용한 퍼지 모델 동정)

  • Ju, Yeong-Hun;Lee, Yeon-U;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.423-431
    • /
    • 2000
  • This paper presents a systematic approach to the input-output data-based fuzzy modeling for the complex and uncertain nonlinear systems, in which the conventional mathematical models may fail to give the satisfying results. To do this, we propose a new method that can yield a successful fuzzy model using a mGA hybrid schemes with a fine-tuning method. We also propose a new coding method fo chromosome for applying the mGA to the structure and parameter identifications of fuzzy model simultaneously. During mGA search, multi-purpose fitness function with a penalty process is proposed and adapted to guarantee the accurate and valid fuzzy modes. This coding scheme can effectively represent the zero-order Takagi-Sugeno fuzzy model. The proposed mGA hybrid schemes can coarsely optimize the structure and the parameters of the fuzzy inference system, and then fine tune the identified fuzzy model by using the gradient descent method. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its applications to two nonlinear systems.

  • PDF

Optimum Inverse Design of 2-D Cascade Airfoil (2차원 익렬 익형의 최적역설계)

  • 조장근;박원규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The present paper describes the optimum inverse design of 2-D linear cascade airfoil. The pressure coefficient of an airfoil surface is taken as the objective function, and non-orthogonal incompressible Navier-Stokes equation is applied to calculate the pressure coefficient. Both of steepest descent and conjugate gradient method have been used to make the objective function go to zero. The 1st order finite differential method is applied to the searching direction and the golden section method is used to compute the searching distance. As a result of the present work, a good convergence to the target airfoil has been obtained.

Regularized Optimization of Collaborative Filtering for Recommander System based on Big Data (빅데이터 기반 추천시스템을 위한 협업필터링의 최적화 규제)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.87-92
    • /
    • 2021
  • Bias, variance, error and learning are important factors for performance in modeling a big data based recommendation system. The recommendation model in this system must reduce complexity while maintaining the explanatory diagram. In addition, the sparsity of the dataset and the prediction of the system are more likely to be inversely proportional to each other. Therefore, a product recommendation model has been proposed through learning the similarity between products by using a factorization method of the sparsity of the dataset. In this paper, the generalization ability of the model is improved by applying the max-norm regularization as an optimization method for the loss function of this model. The solution is to apply a stochastic projection gradient descent method that projects a gradient. The sparser data became, it was confirmed that the propsed regularization method was relatively effective compared to the existing method through lots of experiment.

Digital signal change through artificial intelligence machine learning method comparison and learning (인공지능 기계학습 방법 비교와 학습을 통한 디지털 신호변화)

  • Yi, Dokkyun;Park, Jieun
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.251-258
    • /
    • 2019
  • In the future, various products are created in various fields using artificial intelligence. In this age, it is a very important problem to know the operation principle of artificial intelligence learning method and to use it correctly. This paper introduces artificial intelligence learning methods that have been known so far. Learning of artificial intelligence is based on the fixed point iteration method of mathematics. The GD(Gradient Descent) method, which adjusts the convergence speed based on the fixed point iteration method, the Momentum method to summate the amount of gradient, and finally, the Adam method that mixed these methods. This paper describes the advantages and disadvantages of each method. In particularly, the Adam method having adaptivity controls learning ability of machine learning. And we analyze how these methods affect digital signals. The changes in the learning process of digital signals are the basis of accurate application and accurate judgment in the future work and research using artificial intelligence.

Self-Recurrent Wavelet Neural Network Based Direct Adaptive Control for Stable Path Tracking of Mobile Robots

  • You, Sung-Jin;Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.640-645
    • /
    • 2004
  • This paper proposes a direct adaptive control method using self-recurrent wavelet neural network (SRWNN) for stable path tracking of mobile robots. The architecture of the SRWNN is a modified model of the wavelet neural network (WNN). Unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. For this ability of the SRWNN, the SRWNN is used as a controller with simpler structure than the WNN in our on-line control process. The gradient-descent method with adaptive learning rates (ALR) is applied to train the parameters of the SRWNN. The ALR are derived from discrete Lyapunov stability theorem, which are used to guarantee the stable path tracking of mobile robots. Finally, through computer simulations, we demonstrate the effectiveness and stability of the proposed controller.

  • PDF