• Title/Summary/Keyword: gradient-based model

Search Result 726, Processing Time 0.028 seconds

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

Markov Chain Monte Carlo Simulation to Estimate Material Properties of a Layered Half-space (층상 반무한 지반의 물성치 추정을 위한 마르코프 연쇄 몬테카를로 모사 기법)

  • Jin Ho Lee;Hieu Van Nguyen;Se Hyeok Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.203-211
    • /
    • 2023
  • A Markov chain Monte Carlo (MCMC) simulation is proposed for probabilistic full waveform inversion (FWI) in a layered half-space. Dynamic responses on the half-space surface are estimated using the thin-layer method when a harmonic vertical force is applied. Subsequently, a posterior probability distribution function and the corresponding objective function are formulated to minimize the difference between estimations and observed data as well as that of model parameters from prior information. Based on the gradient of the objective function, a proposal distribution and an acceptance probability for MCMC samples are proposed. The proposed MCMC simulation is applied to several layered half-space examples. It is demonstrated that the proposed MCMC simulation for probabilistic FWI can estimate probabilistic material properties such as the shear-wave velocities of a layered half-space.

Development of wound segmentation deep learning algorithm (딥러닝을 이용한 창상 분할 알고리즘 )

  • Hyunyoung Kang;Yeon-Woo Heo;Jae Joon Jeon;Seung-Won Jung;Jiye Kim;Sung Bin Park
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.90-94
    • /
    • 2024
  • Diagnosing wounds presents a significant challenge in clinical settings due to its complexity and the subjective assessments by clinicians. Wound deep learning algorithms quantitatively assess wounds, overcoming these challenges. However, a limitation in existing research is reliance on specific datasets. To address this limitation, we created a comprehensive dataset by combining open dataset with self-produced dataset to enhance clinical applicability. In the annotation process, machine learning based on Gradient Vector Flow (GVF) was utilized to improve objectivity and efficiency over time. Furthermore, the deep learning model was equipped U-net with residual blocks. Significant improvements were observed using the input dataset with images cropped to contain only the wound region of interest (ROI), as opposed to original sized dataset. As a result, the Dice score remarkably increased from 0.80 using the original dataset to 0.89 using the wound ROI crop dataset. This study highlights the need for diverse research using comprehensive datasets. In future study, we aim to further enhance and diversify our dataset to encompass different environments and ethnicities.

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

Time-domain Seismic Waveform Inversion for Anisotropic media (이방성을 고려한 탄성매질에서의 시간영역 파형역산)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwon, Byung-Doo;Yoo, Hai-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-56
    • /
    • 2008
  • The waveform inversion for isotropic media has ever been studied since the 1980s, but there has been few studies for anisotropic media. We present a seismic waveform inversion algorithm for 2-D heterogeneous transversely isotropic structures. A cell-based finite difference algorithm for anisotropic media in time domain is adopted. The steepest descent during the non-linear iterative inversion approach is obtained by backpropagating residual errors using a reverse time migration technique. For scaling the gradient of a misfit function, we use the pseudo Hessian matrix which is assumed to neglect the zero-lag auto-correlation terms of impulse responses in the approximate Hessian matrix of the Gauss-Newton method. We demonstrate the use of these waveform inversion algorithm by applying them to a two layer model and the anisotropic Marmousi model data. With numerical examples, we show that it's difficult to converge to the true model when we assumed that anisotropic media are isotropic. Therefore, it is expected that our waveform inversion algorithm for anisotropic media is adequate to interpret real seismic exploration data.

  • PDF

Seepage Characteristics of Embedded Rock Layer Under the Earth Fill (성토제 하부에 매설된 사석층의 침투특성)

  • Lee Haeng-Woo;Chang Pyoung-Wuck
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.63-72
    • /
    • 2005
  • Rocks are dumped to soft marine ground in order to improve trafficability and construction conditions in the tideland reclamation construction sites. Though this rock layer under earth fill has caused in a serious seepage problems after construction, seepage behaviors of this embankment structure is not correctly investigated. Water flow through rock layers is, in general, known as Non-Darcy's flow. However, the embedded rock layer under earth fill is not known whether its flow is governed by Darcy's or Non-Darcy's law. Therefore, a numerical analysis, laboratory model test and filed investigations were performed for analyzing the those seepage characteristics in this research. Results show that there is significance of $95\%$ of confidence between observed heads and seepage rates, and the calculated ones by SAMTLE which is developed under the assumption that the water flows through the two-layer system obey the Darcy's flow. And after operating the hydraulic gradient(i) of $0.10\~0.55$ upon laboratory model, these seepage characteristics of the embedded rock layer show that Reynolds Numbers are less than 10 and the relationship between these velocities of rock layer(v) and hydraulic gradients(i) is linearly proportional with more than 0.79 of the coefficient of correlation $(R^2)$. And the Reynolds Number of the velocity calculated by the relation of v=ki in the embedded rock layer of OO sea dike is $1\~6$. It shows also laminar flow. Based on these results, it is concluded that the seepage characteristics of embedded rock layer under earth fill can be laminar and Darcy's flow.

Clustering Performance Analysis of Autoencoder with Skip Connection (스킵연결이 적용된 오토인코더 모델의 클러스터링 성능 분석)

  • Jo, In-su;Kang, Yunhee;Choi, Dong-bin;Park, Young B.
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.403-410
    • /
    • 2020
  • In addition to the research on noise removal and super-resolution using the data restoration (Output result) function of Autoencoder, research on the performance improvement of clustering using the dimension reduction function of autoencoder are actively being conducted. The clustering function and data restoration function using Autoencoder have common points that both improve performance through the same learning. Based on these characteristics, this study conducted an experiment to see if the autoencoder model designed to have excellent data recovery performance is superior in clustering performance. Skip connection technique was used to design autoencoder with excellent data recovery performance. The output result performance and clustering performance of both autoencoder model with Skip connection and model without Skip connection were shown as graph and visual extract. The output result performance was increased, but the clustering performance was decreased. This result indicates that the neural network models such as autoencoders are not sure that each layer has learned the characteristics of the data well if the output result is good. Lastly, the performance degradation of clustering was compensated by using both latent code and skip connection. This study is a prior study to solve the Hanja Unicode problem by clustering.

Machine Learning Based MMS Point Cloud Semantic Segmentation (머신러닝 기반 MMS Point Cloud 의미론적 분할)

  • Bae, Jaegu;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.939-951
    • /
    • 2022
  • The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.

Discriminant Analysis of Human's Implicit Intent based on Eyeball Movement (안구운동 기반의 사용자 묵시적 의도 판별 분석 모델)

  • Jang, Young-Min;Mallipeddi, Rammohan;Kim, Cheol-Su;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.212-220
    • /
    • 2013
  • Recently, there has been tremendous increase in human-computer/machine interaction system, where the goal is to provide with an appropriate service to the user at the right time with minimal human inputs for human augmented cognition system. To develop an efficient human augmented cognition system based on human computer/machine interaction, it is important to interpret the user's implicit intention, which is vague, in addition to the explicit intention. According to cognitive visual-motor theory, human eye movements and pupillary responses are rich sources of information about human intention and behavior. In this paper, we propose a novel approach for the identification of human implicit visual search intention based on eye movement pattern and pupillary analysis such as pupil size, gradient of pupil size variation, fixation length/count for the area of interest. The proposed model identifies the human's implicit intention into three types such as navigational intent generation, informational intent generation, and informational intent disappearance. Navigational intent refers to the search to find something interesting in an input scene with no specific instructions, while informational intent refers to the search to find a particular target object at a specific location in the input scene. In the present study, based on the human eye movement pattern and pupillary analysis, we used a hierarchical support vector machine which can detect the transitions between the different implicit intents - navigational intent generation to informational intent generation and informational intent disappearance.