• Title/Summary/Keyword: gradient domain

Search Result 171, Processing Time 0.025 seconds

QUALITATIVE PROPERTIES OF WEAK SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH NONLOCAL SOURCE AND GRADIENT ABSORPTION

  • Chaouai, Zakariya;El Hachimi, Abderrahmane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1003-1031
    • /
    • 2020
  • We consider the following Dirichlet initial boundary value problem with a gradient absorption and a nonlocal source $$\frac{{\partial}u}{{\partial}t}-div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)={\lambda}u^k{\displaystyle\smashmargin{2}{\int\nolimits_{\Omega}}}u^sdx-{\mu}u^l{\mid}{\nabla}u{\mid}^q$$ in a bounded domain Ω ⊂ ℝN, where p > 1, the parameters k, s, l, q, λ > 0 and µ ≥ 0. Firstly, we establish local existence for weak solutions; the aim of this part is to prove a crucial priori estimate on |∇u|. Then, we give appropriate conditions in order to have existence and uniqueness or nonexistence of a global solution in time. Finally, depending on the choices of the initial data, ranges of the coefficients and exponents and measure of the domain, we show that the non-negative global weak solution, when it exists, must extinct after a finite time.

Visualization of Trivariate Scattered Data Interpolation (트라이 베리에이트 산포된 자료 보간의 가시화)

  • Lee, Kun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.2
    • /
    • pp.11-20
    • /
    • 1996
  • The numerous application of scattered data include the modeling and visualization of physical phenomena. A tetrahedrization is one of pre-processing steps for 4-D surface interpolation. In this paper, various tetrahedrization methods are discussed including, Delaunay, least squares fitting, gradient difference, and jump in normal direction derivatives. This paper discriminates the characteristics of tetrahedrization through visualizing tetrahedral domain. This paper also, provides the tool that can compare and analyze the quality of 4-D space approximation over tetrahedral domain numerically, as well as graphically.

  • PDF

A Study of Spectral Domain Electromagnetic Scattering Analysis Applying Wavelet Transform (웨이블릿을 이용한 파수영역 전자파 산란 해석법 연구)

  • 빈영부;주세훈;이정흠;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.337-344
    • /
    • 2000
  • The wavelet analysis technique is applied in the spectral domain to efficiently represent the multi-scale features of the impedance matrices. In this scheme, the 2-D quadtree decomposition (applying the wavelet transform to only the part of the matrix) method often used in image processing area is applied for a sparse moment matrix. CG(Conjugate-Gradient) method is also applied for saving memory and computation time of wavelet transformed moment matrix. Numerical examples show that for rectangular cylinder case the non-zero elements of the transformed moment matrix grows only as O($N^{1.6}$).

  • PDF

CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION

  • Min, Chohong;Yoon, Gangjoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the $L^2$-orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be $O(h^{1.5})$ with step size h. In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.

SYMMETRY AND MONOTONICITY OF SOLUTIONS TO FRACTIONAL ELLIPTIC AND PARABOLIC EQUATIONS

  • Zeng, Fanqi
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1001-1017
    • /
    • 2021
  • In this paper, we first apply parabolic inequalities and a maximum principle to give a new proof for symmetry and monotonicity of solutions to fractional elliptic equations with gradient term by the method of moving planes. Under the condition of suitable initial value, by maximum principles for the fractional parabolic equations, we obtain symmetry and monotonicity of positive solutions for each finite time to nonlinear fractional parabolic equations in a bounded domain and the whole space. More generally, if bounded domain is a ball, then we show that the solution is radially symmetric and monotone decreasing about the origin for each finite time. We firmly believe that parabolic inequalities and a maximum principle introduced here can be conveniently applied to study a variety of nonlocal elliptic and parabolic problems with more general operators and more general nonlinearities.

Efficient Iterative Solvers for Modified Mild Slope Equation (수정완경사방정식을 위한 반복기법의 효율성 비교)

  • Yoon, Jong-Tae;Park, Seung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.61-66
    • /
    • 2006
  • Two iterative solvers are applied to solve the modified mild slope equation. The elliptic formulation of the governing equation is selected for numerical treatment because it is partly suited for complex wave fields, like those encountered inside harbors. The requirement that the computational model should be capable of dealing with a large problem domain is addressed by implementing and testing two iterative solvers, which are based on the Stabilized Bi-Conjugate Gradient Method (BiCGSTAB) and Generalized Conjugate Gradient Method (GCGM). The characteristics of the solvers are compared, using the results for Berkhoff's shoal test, used widely as a benchmark in coastal modeling. It is shown that the GCGM algorithm has a better convergence rate than BiCGSTAB, and preconditioning of these algorithms gives more than half a reduction of computational cost.

Design Efforts of PAL XFEL RF Components to Reduce RF Breakdown Due to Surface Electric Gradient in High Power Operation

  • Ju, Yeong-Do;Park, Yong-Jeong;Lee, Heung-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.239-239
    • /
    • 2013
  • The peak klystron power for the PAL (Pohang Accelerator Laboratory) XFEL (X-ray Free Electron Laser) is up to 80 MW which is higher than that of PLS-II LINAC. To prevent the RF breakdown such a high power operation, some of RF components need to be redesigned to reduce the surface electric field gradient to be less than the breakdown gradient at the vacuum-metal surface. For instances, the redesign of the Stanford Linear Accelerator Energy Doubler (SLED) system, the directional coupler and 3dB power splitter using the finite-difference time-domain (FDTD) simulation will be presented.

  • PDF

EXTINCTION AND POSITIVITY OF SOLUTIONS FOR A CLASS OF SEMILINEAR PARABOLIC EQUATIONS WITH GRADIENT SOURCE TERMS

  • Yi, Su-Cheol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.397-409
    • /
    • 2017
  • In this paper, we investigated the extinction, positivity, and decay estimates of the solutions to the initial-boundary value problem of the semilinear parabolic equation with nonlinear gradient source and interior absorption terms by using the integral norm estimate method. We found that the decay estimates depend on the choices of initial data, coefficients and domain, and the first eigenvalue of the Laplacean operator with homogeneous Dirichlet boundary condition plays an important role in the proofs of main results.

EXISTENCE OF SOLUTIONS FOR GRADIENT TYPE ELLIPTIC SYSTEMS WITH LINKING METHODS

  • Jin, Yinghua;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.65-70
    • /
    • 2007
  • We study the existence of nontrivial solutions of the Gradient type Dirichlet boundary value problem for elliptic systems of the form $-{\Delta}U(x)={\nabla}F(x,U(x)),x{\in}{\Omega}$, where ${\Omega}{\subset}R^N(N{\geq}1)$ is a bounded regular domain and U = (u, v) : ${\Omega}{\rightarrow}R^2$. To study the system we use the liking theorem on product space.

  • PDF

Sensor Signal Processing for Estimating Gradient Values using Perturbation Input (섭동 입력을 사용한 구배 값 추정용 센서 신호 처리)

  • Lee, Sooyong
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.251-258
    • /
    • 2017
  • According to recent studies by scientists about how to search for food, homes and the mates, it is found that the gradient information plays a key role. From cells to insects and large animals, they mostly either have special sensing organism or use a strategy to measure the gradient. Use of a perturbation as an additional input is introduced for sensor signal processing in order to get the gradient information. Different from typical approach, which calculates the gradient from differentiation, the proposed processing is done by a form of integration, thus it is very robust to noise. Discrete time domain analyses are given for one, two and three input functions for the estimation of the gradients. The amplitude and the frequency of the perturbation are two important parameters for this approach. A quantitative index to measure the effects of the amplitude is developed based on the linear regression analysis. The frequency of the perturbation is to be selected high enough to finish one period of the perturbation before the property is changed significantly with respect to time. Another quantitative index is proposed for guiding the selection of the frequency.