• Title/Summary/Keyword: gradient coil

Search Result 78, Processing Time 0.019 seconds

A Design of New Surface Gradient Coil and Its Application to MR Computerized Tomography

  • Yi, Jeong-Han;Cho, Zang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.217-224
    • /
    • 1992
  • A new three-channel surface gradient coil obtained by using numerical optimization and its application to MR computerized nomography are presented. The new surface gradient coil pro aided linear field gradient region more than twice wider compared with the t'irst surface gradi encl coil, removed torque and field offset, and reduced coupling between the surface gradient coil and combined surface rf coil. We realized the new surface gradient coil set with $30{\times}60{cm^2}$2 size, which generated more tharl 4G/cm with 100 amperes over a $4{\times}4{\times}4{cm^3}$ region with good linearity. The optimal geometries of the three-channel surface gradient coil and volun teer's high-resolution in wiuo spinal cord Images obtained by using the optimized surface gradi ent coil set are presented.

  • PDF

Surface Gradient/RF Coil Set for High-Resolution Skin MRI

  • 한재호;김용권;오정민;박상용;오칠환;최보영;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.74-74
    • /
    • 2003
  • 목적: 피부표면에 가까운 고분해능 MR 영상을 얻기 위하여는 Surface RF Coil과 강력한 경사자계를 갖는 Gradient Coil이 필수적으로 요구된다. 본 연구에서는 High-Resolution MR Imaging을 위해 surface RF Coil과 Surface Gradient Coil을 제안하였다. Target Field Method를 사용하여 Gradient Coil의 전력 소모를 최소화하였으며 MR Microscopy가 가능한 50 mm∼100 mm의 해상도가 가능하도록 Coil을 설계하였다.

  • PDF

Magnetic Field Gradient Optimization for Electronic Anti-Fouling Effect in Heat Exchanger

  • Han, Yong;Wang, Shu-Tao
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1921-1927
    • /
    • 2014
  • A new method for optimizing the magnetic field gradient in the exciting coil of electronic anti-fouling (EAF) system is presented based on changing exciting coil size. In the proposed method, two optimization expressions are deduced based on biot-savart law. The optimization expressions, which can describe the distribution of the magnetic field gradient in the coil, are the function of coil radius and coil length. These optimization expressions can be used to obtain an accurate coil size if the magnetic field gradient on a certain point on the coil's axis of symmetry is needed to be the maximum value. Comparing with the experimental results and the computation results using Finite Element Method simulation to the magnetic field gradient on the coil's axis of symmetry, the computation results obtained by the optimization expression in this article can fit the experimental results and the Finite Element Method results very well. This new method can optimize the EAF system's anti-fouling performance based on improving the magnetic field gradient distribution in the exciting coil.

In Vivo High Resolution NMR Imaging by Using Surface Gradient Coil (평면 경사자계 코일을 사용한 고분해능 NMR 생체 영상법에 관한 연구)

  • Yi, Jeong-Han;Oh, Woo-Jin;Cho, Zang-Hee
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.48-51
    • /
    • 1990
  • A new in vivo high resolution imaging method which is performed with a newly developed three channel surface gradient coil (SGC) is described. The surface gradient coil can produce more than an order of magnitude stronger gradient fields with good linearity within a limited imaging region. To increase the signal to noise ratio (SNR), we have developed an RF coil integrated surface gradient coil set. In this paper, the geometrical structures and characteristics of the proposed surface gradient coil are discussed and experimentally obtained high resolution images ($50\;{\mu}m$ to $100\;{\mu}m$) of a water filled phantom and a human volunteer's knee using the new surface RF coil integrated SGC set are presented for the demonstration of the in vivo high resolution imaging capability of the new imaging method.

  • PDF

Design of Z-directional gradient coil to improve gradient linearity for the nuclear magnetic resonace imaging(NMRI) (경사자장의 선형성 향상을 위한 핵자기공명 영상용 Z-방향 경사자기장 코일 설계)

  • Ko, Rock-Kil;Lee, Dong-Hoon;Baek, Seung-Tae;Kim, Song-Hui;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.235-237
    • /
    • 1998
  • Gradient coil offers the spatial informations of sample or patient in Nuclear Magnetic Resonance Imaging(NMRI) and its gradient field linearity over the field of view(FOV) has many influence on the MR imaging. Accurate and good quality MR imaging can be acquired by the high gradient field linearity over the FOV. So it is an important part to design of gradient coil with good linearity in the wide imaging range. Usually, Z-directional gradient field is generated by using the Helmholtz type coil which is consisted of one-pair loop with anti-current path. It gets less about 40% linearity of the diameter spherical volume(DSV). In this study, we calculated optimized geometrical parameters of two-pair loop system to cancel odd terms up to $B_7$ included effectively. we also analyzed and compared the gradient field distribution and linearity of the common Helmholtz coil with them of the two-pair loop system.

  • PDF

자기공명 영상촬영을 위한 임의로 선택된 모양의 최소인덕턴스 경사자계코일의 설계 (Minimum-Inductance MRI Gradient Coil Design with Arbitrarily-Selected Shape)

  • Lee, J.K.;Yang, Y.J.;Yi, Y.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.85-87
    • /
    • 1994
  • This paper proposes a new inductance minimization scheme for a gradient system of arbitrarily selected shape. Although it is important to minimize the gradient coil inductance to reduce the current switching time, such minimization has been possible only for cylindrical or parallel biplanar coils. By using small current loops on arbitrarily selected surface as optimization elements, the inductance of the whole circuit can be minimized using the loop's self- and mutual-inductances. Wire positions can be easily derived from the loop current distribution. Preliminary studies for the design of x-directional surface gradient coil show the utility of tile proposed gradient coil design scheme.

  • PDF

Low-Power Design of the Surface Gradient Coil for Magnetic Resonance Imaging (자기공명영상촬영을 위한 표면경사자계코일의 저전력 설계)

  • Oh, Chang-Hyun;Lee, Jong-Kwon;Yi, Yun;Kim, Min-Gi
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.33-35
    • /
    • 1993
  • A new low-power, high-order optimization scheme to design surface gradient coils (SGC) is proposed for magnetic resonance imaging (MRI). Although previous SGCs have been designed and constructed just to get strong linear gradients, this paper proposes more systematic ways of SGC design by minimizing electrical power consumption in the gradient coil and by removing unnecessary high-order field distortions in the imaging region. By assuming continuous current flow on the coil surface which may be or may not be planar, power consumption in the coil is minimized. According to the simulation results, the SGC designed by using the proposed scheme seems to produce much more uniform linear gradient field using less electrical power compared to the previously proposed SGCs.

  • PDF

Sources of uniform and 2nd-order gradient fields for testing SQUID performance (SQUID 2차미분기 성능 평가용 균일자기장 및 2차 미분 자기장 발생원)

  • Lee, Soon-Gul
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.152-157
    • /
    • 2007
  • Uniaxial square Helmholtz coils for testing SQUID sensors were designed and their field distributions were calculated. Optimum parameters for maximizing the uniform region in the Helmholtz mode were obtained for different uniformity tolerances. The coil system consists of 2 pairs of identical square loops, a Helmholtz pair for generating uniform fields and the other for the 2nd-order gradient fields in combination with the Helmholtz pair. Full expressions of the axial component of the field were calculated by using Biot-Savart's law. To understand the behavior of the field near the coil center, analytical expressions were obtained up to the 4th-order in the midplane and along the coil axis. The Helmholtz condition for generating uniform fields was calculated to be $d/{\alpha}=0.544505643$, where 2d is the inter-coil distance and $2{\alpha}$ is the side length of the coil square. Maximized uniform range can be obtained for a given nonuniformity tolerance by choosing $d/{\alpha}$ slightly lower than the Helmholtz condition. The pure second-order gradient field can be generated by subtracting the Helmholtz field from the field of the 2nd pair with equal magnitudes of the center fields of the two pairs. The coil system is useful for testing balance and sensitivity of SQUID gradiometers.

  • PDF

High-Order Surface Gradient Coil Design Using Target Field Approach

  • Lee, J.K.;Yang, Y.J.;Jeong, S.T.;Choi, H.J.;Cho, Z.H.;Oh, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • The purpose of this paper is to design high-order (or radial) surface gradient coil (SGC), which can provide multi-dimensional spatial selection. Although the spatial Selection with High-Order gradienT (SHOT) can provide a 2-D selection with only one selective RF pulse, the high-order gradient pro- duced by conventional cylindrical-shape coils has not been clinically useful due to the large selection size caused by the limited radial gradient intensity. However, by using the proposed high-order SGCs located near the imaging region, the size of volume selection can be reduced to a clinically useflll size of 1-2 cm in diameter by applying stronger radial gradient field with much less gradient driving power. So far radial SGCs have been designed by using the field component method and may cause distortion in the selection shapes. In this paper, by using the target field approach for the coil design, selected volumes became almost circular. A 40 cm-by-40 cm $z^2$_surface gradient coil has been designed and implemented by using the target field approach. Phantom and volunteer studies have been performed Experimental results using spatially localized MRI show good agreement to the theoretically predicted behavior.

  • PDF

A new gradient coil design technique for open magnetic resonance imaging systems (개방형 자기공명영상시스템용 경사자계코일의 새로운 설계기법)

  • Lee, Soo-Yeol;Park, Bu-Sik;Yi, Jeong-Han;Yi, Wan
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.72-79
    • /
    • 1997
  • Most open magnetic resonance imaging systems have used the planar gradient coils whose inductances were minimized through the magnetic energy minimization procedure in the spatial frequency domain. Though the planar gradient coils have smaller inductance than conventional gradient coils, the planar gradient coils often suffer from their poor magnetic field linearity. Scaling the spatial frequencies of the current density function designed by the magnetic energy minimization, magnetic field linearity of the planar gradient coils can be greatly improved with small sacrifice of gradient coil inductance. We have found that the figure of merit of the planar gradient coils, defined by the gradient strength divided by the linearity error and the inductance, can be improved by proposed technique.

  • PDF