• 제목/요약/키워드: gradient coefficient

Search Result 426, Processing Time 0.025 seconds

Self-Diffusion Coefficients of Colloidal Association Structures in ADS/OTAC Mixed Aqueous Solutions by Pulsed (Field) Gradient Spin Echo-NMR (Pulsed (Field) Gradient Spin Echo (PGSE) NMR에 의한 ADS/OTAC 혼합 수용액에서의 콜로이드 회합체의 자가 확산 계수)

  • Kim, Hong-Un;Lim, Kyung-Hee;Kim, Eun-Hee;Cheong, Chae-Joon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.339-348
    • /
    • 2002
  • Self-diffusion coefficients of colloidal ass9Ciation structures in the aqueous solutions of anionic ammonium dodecyl sulfate (ADS) and cationic octadecyltrimethylammonium chloride (OTAC) surfactants were measured by pulsed-gradient spin echo NMR. The results were interpreted on the basis of the ADS/OTAC/water phase diagram. Crossing the phase boundaries, significant changes in self diffusion coefficients were observed and well correlated to the phase diagram. For the micelles their apparent radii were obtained from Stokes-Einstein equation. Their values were 15 for the ADS micelles and 54 ${{\AA}}$ for the OTAC micelles, respectively. For vesicles which were formed spontaneously at different relative amounts of the surfactants and total surfactant concentrations, the radius was measured as 50 to 200 nm. This result is in fair agreement with those by TEM and light scattering.

A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force

  • Yao, Huilan;Zhang, Huaixin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.477-490
    • /
    • 2018
  • Effects of inflow Reynolds number (Re), turbulence intensity (I) and pressure gradient on the transition flow over a blade section were studied using the ${\gamma}-Re{\theta}$ transition model (STAR-CCM+). Results show that the $Re_T$ (transition Re) at the transition location ($P_T$) varies strongly with Re, I and the magnitude of pressure gradient. The $Re_T$ increases significantly with the increase of the magnitude of favorable pressure gradient. It demonstrates that the $Re_T$ on different blade sections of a rotating propeller are different. More importantly, when there is strong adverse pressure gradient, the $P_T$ is always close to the minimum pressure point. Based on these conclusions, the $P_T$ on model propeller blade surface can be estimated. Numerical investigations of pressure distribution and transition flow on a propeller blade section prove these findings. Last, a simple method was proposed to estimate the $P_T$ only based on the propeller geometry and the advance coefficient.

Thermal Stress at the Junction of Skirt to Head in Hot Pressure Vessel (고온 수직형 압력용기 Skirt 부의 열응력에 관한 연구)

  • 한명수;한종만;조용관
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.111-121
    • /
    • 1998
  • It is well recognized that a excessive temperature gradient from the junction of head to skirt in axial direction in a hot pressure vessel can cause unpredicted high thermal stress at the junction and/or in axial direction of a skirt. this thermal stress resulting from axial thermal gradient may be a major cause of unsoundness of structural integrity. In case of cyclic operation of hot pressure vessels, the thermal stress becomes one of the primary design consideration because of the possibility of fracture as a result of cyclic thermal fatigue and progressively incremental plastic deformation. To perform thermal stress analysis of the junction and cylindrical skirt of a vessel, or, at least, to inspect quantitatively the magnitude and effect of thermal stress, the temperature profile of the vessel and skirt must be known. This paper demonstrated the temperature distribution and thermal stress analysis for the junction of skirt to head using F.E. analysis. Effect of air pocket in crotch space was quantitatively investigated to minimize the temperature gradient causing the thermal stress in axial direction. Effect of the skirt height on thermal stresses was also studied. Analysis results were compared with theoretical formulas to verify th applicability to the strength calculation in design field.

  • PDF

A Study on Zirconia/Metal.Functionally Gradient Materials by Sintering Method(1) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(1))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 1994
  • Functionally gradient materials(FGM), which have the continuous or stepwise variation in a composition and microstructure, are being noticed as the material that solves problems caused by heterogeneous interface of coating or joining. And these materials also expect new functions occured by gradient composition itself. Therefore, to examine possibility of thermal barrier materials, TZP/Mo·FGM and TZP/Ni·FGM were fabricated by sintering method. As to the sintered specimens, sintering shrinkage, relative density and Vicker's hardness in each composition were examined. The phenomena due to the difference of sintering shrinkage velocity during sintering process and the thermal stress induced through differences of thermal expansion coefficient in FGM were discussed. And the structure changes at interface and microsturcture of FGM were investigated. As a results, the difference of shrinkage between ceramic and metal was about 14% in TZP/Mo and 7% in TZP/Ni. The relative density and hardness were considerably influenced by metal content changes. Owing to unbalance of sintering shrinkage velocity between ceramic and metal, various sintering defects were occured. To control these sintering defects and thermal stress, gradient composition of FGM should be narrow. The microstructure changes of FGM depended on the ceramic or metal volume percents and were analogous to the theoretical design.

  • PDF

On the Chemical Diffusion Coefficient of H2O in AB1-xBxO(3-x/2)-type Perobskites

  • Baek, Hyun-Deok;Virkar, Anil V.
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.827-831
    • /
    • 2003
  • In proton-conducting perovskites, oxygen ions and protons make a diffusion pair for a chemical diffusion and thus lead to the transport of $H_2O$ under its chemical potential gradient. The present manuscript develops relationships between the chemical diffusion coefficient of $H_2O$ and the diffusion coefficients of protons and oxygen vacancies with an emphasis on the thermodynamic behavior of the oxygen vacancies. Depending on the degree of hydration X, two different expressions of the chemical diffusion coefficient were obtained : equation omitted and equation omitted.

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

On Line Formation Analysis for Gradient Trail (경사지 원로의 선형 분석)

  • 김용수;나정화
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.1
    • /
    • pp.45-60
    • /
    • 1986
  • The purpose of the present studies is to establish more rational and practical planning theory for trails of gradient. The results drawn from this research work are as follow ; Mean angle according to topography of Jiga road is $3^{\circ}$33'in low part, $8^{\circ}$17'in middle park and $12^{\circ}$48'in high part. Here, we can find that the highest gradient of Jige roacl is $12^{\circ}$48, Which is showing the fact that jigs road is the most function road when we compare other roads. The regression coefficient between potential model pattern and calculuted model pattern is 0.8 withinTEX>$ 0~<5^{\circ}$, 0.5 within$ 6~10^{\circ}$, and 0.53 within $11~16^{\circ}$. The linear of these model pattern is lower in R & L value, and lager in S & A value according to be steeping gradient. It is thought that these fact are closely related with between human fatigue and R.S.A.L value. Accordingly, when we plan the trails of the gradient in city park, the from of trails is right to mix straight line with curve line within $0~5^{\circ}$, and sine wave close curve line within $6~10 ^{\circ}$, $l1~16^{\circ}$. But, in fact, It is absurd that potential model pattern is applied to the city park in park of corner, widely road and facilities. Therefore, It is thought that the study of this problems will be proceeded in the future. I can reduce the following equation in relation R & S by gradient ; 22 log (R-6.0)=47.96-$\delta$

  • PDF

Measurement of Peltier Heat at the Solid/Liquid Interface and Its Application to Crystal Growth I : Theoretical Approach (고/액 계면에서의 Peltier 열 측정 및 결정성장에의 응용 I : 이론적 접근)

  • Kim, Il-Ho;Jang, Gyeong-Uk;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1108-1111
    • /
    • 1999
  • The Peltier heat absorbed or evolved at the solidiliquid interface in the unidirectional solidification process could contribute to the increase of temperature gradient in liquid and growth velocity, and the enhancement of crystal orientation. In this study, in order to measure the Peltier heat generated at the solidiliquid interface as a way of application to crystal growth, the thermoelectric effects were investigated on the temperature changes at the solid- and liquid-phase of the same material and its interface. Through the theoretical consideration, it was possible to separate sole Peltier. Thomson or Joule heat from the temperature changes due to current density, polarity, and temperature gradient. Thomson coefficient of solid- and liquid-phase as well as Peltier coefficient at the solid/liquid interface could be obtained.

  • PDF

Application of Numerical Optimization Technique to the Design of Fans (송풍기 설계를 위한 수치최적설계기법의 응용)

  • Kim, K.Y.;Choi, J.H.;Kim, T.J.;Rew, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.566-576
    • /
    • 1995
  • A Computational code has been developed in order to design axial fans by the numerical optimization techniques incorporated with flow analysis code solving three-dimensional Navier-Stokes equation. The steepest descent method and the conjugate gradient method are used to look for the search direction in the design space, and the golden section method is used for one-dimensional search. To solve the constrained optimization problem, sequential unconstrained minimization technique, SUMT, is used with imposed quadratic extended interior penalty functions. In the optimization of two-dimensional cascade design, the ratio of drag coefficient to lift coefficient is minimized by the design variables such as maximum thickness, maximum ordinate of camber and chord wise position of maximum ordinate. In the application of this numerical optimization technique to the design of an axial fan, the efficiency is maximized by the design variables related to the sweep angle distributed by quadratic function along the hub to tip of fan.

  • PDF

Optimum Inverse Design of 2-D Cascade Airfoil (2차원 익렬 익형의 최적역설계)

  • 조장근;박원규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The present paper describes the optimum inverse design of 2-D linear cascade airfoil. The pressure coefficient of an airfoil surface is taken as the objective function, and non-orthogonal incompressible Navier-Stokes equation is applied to calculate the pressure coefficient. Both of steepest descent and conjugate gradient method have been used to make the objective function go to zero. The 1st order finite differential method is applied to the searching direction and the golden section method is used to compute the searching distance. As a result of the present work, a good convergence to the target airfoil has been obtained.