• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.03 seconds

Investigation of Indicator Kriging for Evaluating Proper Rock Mass Classification based on Electrical Resistivity and RMR Correlation Analysis (RMR과 전기비저항의 상관성 해석에 기초하여 지시크리깅을 적용한 최적 암반 분류 기법 고찰)

  • Lee, Kyung-Ju;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.407-420
    • /
    • 2009
  • In this study geostatistical technique using indicator kriging was performed to evaluate the optimal rock mass classification by integrating the various geophysical information such as borehole data and geophysical data. To get the optimal kriging result, it is necessary to devise the suitable technique to integrate the hard (borehole) and soft (geophysical) data effectively. Also, the model parameters of the variogram must be determined as a priori procedure. Iterative non-linear inversion method was implemented to determine the model parameters of theoretical variogram. To verify the algorithm, behaviour of object function and precision of convergence were investigated, revealing that gradient of the range is extremely small. This algorithm for the field data was applied to a mountainous area planned for a large-scale tunneling construction. As for a soft data, resistivity information from AMT survey is incorporated with RMR information from borehole data, a sort of hard data. Finally, RMR profiles were constructed and attempted to be interpreted at the tunnel elevation and the upper 1D level.

A Smart Antenna Test-bed Utilizing TMS320C30 in Smart Antenna System (TMS320C30을 이용한 스마트 안테나 시스템의 Test-bed 구현)

  • 김종욱;권세용;안성수;최승원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.523-533
    • /
    • 2000
  • In this paper, we present the hardware implementation of a smart antenna test-bed for a real -time performance analysis of the beam-forming algorithm operating in a wide-band CDMA environments of the WLL(Wireless Local Loop) standard. The test-bed introduced in this paper includes an external PC and signal generating module as well as the beam-forming module in order to perform, analyze, and evaluate the performance of the proposed smart antenna system. In the beam-forming module, the optimal weight vector is provided by the modified CGM algorithm. The computed weight vector is transferred back to the external PC for the performance analysis based on the off-line processing. From our analysis obtained in the hardware of the test-bed, it is concluded that the proposed smart antenna system for the WLL system is appropriate for enhancing the communication quality and capacity tremendously at the cell-site of the CDMA environment.

  • PDF

Quantitative and qualitative analysis of the flow field development through T99 draft tube caused by optimized inlet velocity profiles

  • Galvan, Sergio;Reggio, Marcelo;Guibault, Francois;Solorio, Gildardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The effect of the inlet swirling flow in a hydraulic turbine draft tube is a very complex phenomenon, which has been extensively investigated both theoretically and experimentally. In fact, the finding of the optimal flow distribution at the draft tube inlet in order to get the best performance has remained a challenge. Thus, attempting to answer this question, it was assumed that through an automatic optimization process a Genetic Algorithm would be able to manage a parameterized inlet velocity profile in order to achieve the best flow field for a particular draft tube. As a result of the optimization process, it was possible to obtain different draft-tube flow structures generated by the automatic manipulation of parameterized inlet velocity profiles. Thus, this work develops a qualitative and quantitative analysis of these new draft tube flow field structures provoked by the redesigned inlet velocity profiles. The comparisons among the different flow fields obtained clearly illustrate the importance of the flow uniformity at the end of the conduit. Another important aspect has been the elimination of the re-circulating flow area which used to promote an adverse pressure gradient in the cone, deteriorating the pressure recovery effect. Thanks to the evolutionary optimization strategy, it has been possible to demonstrate that the optimized inlet velocity profile can suppress or mitigate, at least numerically, the undesirable draft tube flow characteristics. Finally, since there is only a single swirl number for which the objective function has been minimized, the energy loss factor might be slightly affected by the flow rate if the same relation of the axial-tangential velocity components is maintained, which makes it possible to scale the inlet velocity field to different operating points.

A Study on the Improvement of Fault Detection Capability for Fault Indicator using Fuzzy Clustering and Neural Network (퍼지클러스터링 기법과 신경회로망을 이용한 고장표시기의 고장검출 능력 개선에 관한 연구)

  • Hong, Dae-Seung;Yim, Hwa-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.374-379
    • /
    • 2007
  • This paper focuses on the improvement of fault detection algorithm in FRTU(feeder remote terminal unit) on the feeder of distribution power system. FRTU is applied to fault detection schemes for phase fault and ground fault. Especially, cold load pickup and inrush restraint functions distinguish the fault current from the normal load current. FRTU shows FI(Fault Indicator) when the fault current is over pickup value or inrush current. STFT(Short Time Fourier Transform) analysis provides the frequency and time Information. FCM(Fuzzy C-Mean clustering) algorithm extracts characteristics of harmonics. The neural network system as a fault detector was trained to distinguish the inruih current from the fault status by a gradient descent method. In this paper, fault detection is improved by using FCM and neural network. The result data were measured in actual 22.9kV distribution power system.

Design of Upper Body Detection System Using RBFNN Based on HOG Algorithm (HOG기반 RBFNN을 이용한 상반신 검출 시스템의 설계)

  • Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • Recently, CCTV cameras are emplaced actively to reinforce security and intelligent surveillance systems have been under development for detecting and monitoring of the objects in the video. In this study, we propose a method for detection of upper body in intelligent surveillance system using FCM-based RBFNN classifier realized with the aid of HOG features. Firstly, HOG features that have been originally proposed to detect the pedestrian are adopted to train the unique gradient features about upper body. However, HOG features typically exhibit a very high dimension of which is proportional to the size of the input image, it is necessary to reduce the dimension of inputs of the RBFNN classifier. Thus the well-known PCA algorithm is applied prior to the RBFNN classification step. In the computer simulation experiments, the RBFNN classifier was trained using pre-classified upper body images and non-person images and then the performance of the proposed classifier for upper body detection is evaluated by using test images and video sequences.

A Multiresolution Image Segmentation Method using Stabilized Inverse Diffusion Equation (안정화된 역 확산 방정식을 사용한 다중해상도 영상 분할 기법)

  • Lee Woong-Hee;Kim Tae-Hee;Jeong Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • Image segmentation is the task which partitions the image into meaningful regions and considered to be one of the most important steps in computer vision and image processing. Image segmentation is also widely used in object-based video compression such as MPEG-4 to extract out the object regions from the given frame. Watershed algorithm is frequently used to obtain the more accurate region boundaries. But, it is well known that the watershed algorithm is extremely sensitive to gradient noise and usually results in oversegmentation. To solve such a problem, we propose an image segmentation method which is robust to noise by using stabilized inverse diffusion equation (SIDE) and is more efficient in segmentation by employing multiresolution approach. In this paper, we apply both the region projection method using labels of adjacent regions and the region merging method based on region adjacency graph (RAG). Experimental results on noisy image show that the oversegmenation is reduced and segmentation efficiency is increased.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Robust Head Tracking using a Hybrid of Omega Shape Tracker and Face Detector for Robot Photographer (로봇 사진사를 위한 오메가 형상 추적기와 얼굴 검출기 융합을 이용한 강인한 머리 추적)

  • Kim, Ji-Sung;Joung, Ji-Hoon;Ho, An-Kwang;Ryu, Yeon-Geol;Lee, Won-Hyung;Jin, Chung-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.152-159
    • /
    • 2010
  • Finding a head of a person in a scene is very important for taking a well composed picture by a robot photographer because it depends on the position of the head. So in this paper, we propose a robust head tracking algorithm using a hybrid of an omega shape tracker and local binary pattern (LBP) AdaBoost face detector for the robot photographer to take a fine picture automatically. Face detection algorithms have good performance in terms of finding frontal faces, but it is not the same for rotated faces. In addition, when the face is occluded by a hat or hands, it has a hard time finding the face. In order to solve this problem, the omega shape tracker based on active shape model (ASM) is presented. The omega shape tracker is robust to occlusion and illuminationchange. However, whenthe environment is dynamic,such as when people move fast and when there is a complex background, its performance is unsatisfactory. Therefore, a method combining the face detection algorithm and the omega shape tracker by probabilistic method using histograms of oriented gradient (HOG) descriptor is proposed in this paper, in order to robustly find human head. A robot photographer was also implemented to abide by the 'rule of thirds' and to take photos when people smile.

Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography (개선된 가변형 능동모델을 이용한 흉부 컴퓨터단층영상에서 폐 실질의 분할)

  • Kim, Chang-Soo;Choi, Seok-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2163-2170
    • /
    • 2009
  • We present an automated, energy minimized-based method for Lung parenchyma segmenting Chest Computed Tomography(CT) datasets. Deformable model is used for energy minimized segmentation. Quantitative knowledge including expected volume, shape of Chest CT provides more feature constrain to diagnosis or surgery operation planning. Segmentation subdivides an lung image into its consistent regions or objects. Depends on energy-minimizing, the level detail image of subdivision is carried. Segmentation should stop when the objects or region of interest in an application have been detected. The deformable model that has attracted the most attention to date is popularly known as snakes. Snakes or deformable contour models represent a special case of the general multidimensional deformable model theory. This is used extensively in computer vision and image processing applications, particularly to locate object boundaries, in the mean time a new type of external force for deformable models, called gradient vector flow(GVF) was introduced by Xu. Our proposed algorithm of deformable model is new external energy of GVF for exact segmentation. In this paper, Clinical material for experiments shows better results of proposal algorithm in Lung parenchyma segmentation on Chest CT.

Blind Adaptive Receiver based on Constant Modulus for Downlink MC-CDMA Systems (하향링크 MC-CDMA 시스템을 위한 CM 기반의 블라인드 적응 수신기)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.47-54
    • /
    • 2019
  • In this paper, we consider a constant modulus (CM) based blind adaptive receiver design for downlink multi-carrier code-division multiple access (MC-CDMA) systems employing simple space-time block coding (STBC). In the paper, filter weight vectors used for the detection of the transmitted symbols are partitioned into its subvectors and then, special relations among the optimal subvectors minimizing the CM metric are derived. Using the special relations, we present a modified CM metric and propose a new blind adaptive stochastic-gradient CM algorithm (SG-CMA) by minimizing the modified CM metric. The proposed blind adaptive SG-CMA has faster convergence rate than the conventional SG-CMA because the filter weight vectors of the proposed scheme are updated in the region of satisfying the derived special relations. Computer simulation results are given to verify the superiority of the proposed SG-CMA.