• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.028 seconds

A Study on the Development and Evaluation of Personalized Book Recommendation Systems in University Libraries Based on Individual Loan Records (대출 기록에 기초한 대학 도서관 도서 개인화 추천시스템 개발 및 평가에 관한 연구)

  • Hong, Yeonkyoung;Jeon, Seoyoung;Choi, Jaeyoung;Yang, Heeyoon;Han, Chaeeun;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.2
    • /
    • pp.113-127
    • /
    • 2021
  • The purpose of this study is to propose a personalized book recommendation system to promote the use of university libraries. In particular, unlike many recommended services that are based on existing users' preferences, this study proposes a method that derive evaluation metrics using individual users' book rental history and tendencies, which can be an effective alternative when users' preferences are not available. This study suggests models using two matrix decomposition methods: Singular Value Decomposition(SVD) and Stochastic Gradient Descent(SGD) that recommend books to users in a way that yields an expected preference score for books that have not yet been read by them. In addition, the model was implemented using a user-based collaborative filtering algorithm by referring to book rental history of other users that have high similarities with the target user. Finally, user evaluation was conducted for the three models using the derived evaluation metrics. Each of the three models recommended five books to users who can either accept or reject the recommendations as the way to evaluate the models.

An Improved Area Edge Detection for Real-time Image Processing (실시간 영상 처리를 위한 향상된 영역 경계 검출)

  • Kim, Seung-Hee;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.99-106
    • /
    • 2009
  • Though edge detection, an important stage that significantly affecting the performance of image recognition, has been given numerous researches on its execution methods, it still remains as difficult problem and it is one of the components for image recognition applications while it is not the only way to identify an object or track a specific area. This paper, unlike gradient operator using edge detection method, found out edge pixel by referring to 2 neighboring pixels information in binary image and comparing them with pre-defined 4 edge pixels pattern, and detected binary image edge by determining the direction of the next edge detection exploring pixel and proposed method to detect binary image edge by repeating step of edge detection to detect another area edge. When recognizing image, if edge is detected with the use of gradient operator, thinning process, the stage next to edge detection, can be omitted, and with the edge detection algorithm executing time reduced compared with existing area edge tracing method, the entire image recognizing time can be reduced by applying real-time image recognizing system.

Privacy Preserving Techniques for Deep Learning in Multi-Party System (멀티 파티 시스템에서 딥러닝을 위한 프라이버시 보존 기술)

  • Hye-Kyeong Ko
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.647-654
    • /
    • 2023
  • Deep Learning is a useful method for classifying and recognizing complex data such as images and text, and the accuracy of the deep learning method is the basis for making artificial intelligence-based services on the Internet useful. However, the vast amount of user da vita used for training in deep learning has led to privacy violation problems, and it is worried that companies that have collected personal and sensitive data of users, such as photographs and voices, own the data indefinitely. Users cannot delete their data and cannot limit the purpose of use. For example, data owners such as medical institutions that want to apply deep learning technology to patients' medical records cannot share patient data because of privacy and confidentiality issues, making it difficult to benefit from deep learning technology. In this paper, we have designed a privacy preservation technique-applied deep learning technique that allows multiple workers to use a neural network model jointly, without sharing input datasets, in multi-party system. We proposed a method that can selectively share small subsets using an optimization algorithm based on modified stochastic gradient descent, confirming that it could facilitate training with increased learning accuracy while protecting private information.

Secure Self-Driving Car System Resistant to the Adversarial Evasion Attacks (적대적 회피 공격에 대응하는 안전한 자율주행 자동차 시스템)

  • Seungyeol Lee;Hyunro Lee;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.907-917
    • /
    • 2023
  • Recently, a self-driving car have applied deep learning technology to advanced driver assistance system can provide convenience to drivers, but it is shown deep that learning technology is vulnerable to adversarial evasion attacks. In this paper, we performed five adversarial evasion attacks, including MI-FGSM(Momentum Iterative-Fast Gradient Sign Method), targeting the object detection algorithm YOLOv5 (You Only Look Once), and measured the object detection performance in terms of mAP(mean Average Precision). In particular, we present a method applying morphology operations for YOLO to detect objects normally by removing noise and extracting boundary. As a result of analyzing its performance through experiments, when an adversarial attack was performed, YOLO's mAP dropped by at least 7.9%. The YOLO applied our proposed method can detect objects up to 87.3% of mAP performance.

Inhalation Configuration Detection for COVID-19 Patient Secluded Observing using Wearable IoTs Platform

  • Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1478-1499
    • /
    • 2024
  • Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.

Business Intelligence Design for Strategic Decision Making for Small and Midium-size E-Commerce Sellers: Focusing on Promotion Strategy (중소 전자상거래 판매상의 전략적 의사결정을 위한 비즈니스 인텔리전스 설계: 프로모션 전략을 중심으로)

  • Seung-Joo Lee;Young-Hyun Lee;Jin-Hyun Lee;Kang-Hyun Lee;Kwang-Sup Shin
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.201-222
    • /
    • 2023
  • As the e-Commerce gets increased based on the platform, a lot of small and medium sized sellers have tried to develop the more effective strategies to maximize the profit. In order to increase the profitability, it is quite important to make the strategic decisions based on the range of promotion, discount rate and categories of products. This research aims to develop the business intelligence application which can help sellers of e-Commerce platform make better decisions. To decide whether or not to promote, it is needed to predict the level of increase in sales after promotion. I n this research, we have applied the various machine learning algorithm such as MLP(Multi Layer Perceptron), Gradient Boosting Regression, Random Forest, and Linear Regression. Because of the complexity of data structure and distinctive characteristics of product categories, Random Forest and MLP showed the best performance. It seems possible to apply the proposed approach in this research in support the small and medium sized sellers to react on the market changes and to make the reasonable decisions based on the data, not their own experience.

Developing Image Processing Program for Automated Counting of Airborne Fibers (이미지 처리를 통한 공기 중 섬유의 자동계수 알고리즘 프로그램 개발)

  • Choi, Sungwon;Lee, Heekong;Lee, Jong Il;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.484-491
    • /
    • 2014
  • Objectives: An image processing program for asbestos fibers analyzing the gradient components and partial linearity was developed in order to accurately segment fibers. The objectives were to increase the accuracy of counting through the formulation of the size and shape of fibers and to guarantee robust fiber detection in noisy backgrounds. Methods: We utilized samples mixed with sand and sepiolite, which has a similar structure to asbestos. Sample concentrations of 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, and 3%(w/w) were prepared. The sand used was homogenized after being sieved to less than $180{\mu}m$. Airborne samples were collected on MCE filters by utilizing a personal pump with 2 L/min flow rate for 30 minutes. We used the NIOSH 7400 method for pre-treating and counting the fibers on the filters. The results of the NIOSH 7400 method were compared with those of the image processing program. Results: The performance of the developed algorithm, when compared with the target images acquired by PCM, showed that the detection rate was on average 88.67%. The main causes of non-detection were missing fibers with a low degree of contrast and overlapping of faint and thin fibers. Also, some duplicate countings occurred for fibers with breaks in the middle due to overlapping particles. Conclusions: An image detection algorithm that could increase the accuracy of fiber counting was developed by considering the direction of the edge to extract images of fibers. It showed comparable results to PCM analysis and could be used to count fibers through real-time tracking by modeling a branch point to graph. This algorithm can be utilized to measure the concentrations of asbestos in real-time if a suitable optical design is developed.

A Study on the Preprocessing Method Using Construction of Watershed for Character Image segmentation

  • Nam Sang Yep;Choi Young Kyoo;Kwon Yun Jung;Lee Sung Chang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.814-818
    • /
    • 2004
  • Off-line handwritten character recognition is in difficulty of incomplete preprocessing because it has not dynamic and timing information besides has various handwriting, extreme overlap of the consonant and vowel and many error image of stroke. Consequently off-line handwritten character recognition needs to study about preprocessing of various methods such as binarization and thinning. This paper considers running time of watershed algorithm and the quality of resulting image as preprocessing For off-line handwritten Korean character recognition. So it proposes application of effective watershed algorithm for segmentation of character region and background region in gray level character image and segmentation function for binarization image and segmentation function for binarization by extracted watershed image. Besides it proposes thinning methods which effectively extracts skeleton through conditional test mask considering running time and quality. of skeleton, estimates efficiency of existing methods and this paper's methods as running time and quality. Watershed image conversion uses prewitt operator for gradient image conversion, extracts local minima considering 8-neighborhood pixel. And methods by using difference of mean value is used in region merging step, Converted watershed image by means of this methods separates effectively character region and background region applying to segmentation function. Average execution time on the previous method was 2.16 second and on this paper method was 1.72 second. We prove that this paper's method removed noise effectively with overlap stroke as compared with the previous method.

  • PDF

Analysis of Microwave Inverse Scattering Using the Broadband Electromagnetic Waves (광대역 전자파를 이용한 역산란 해석 연구)

  • Lee Jung-Hoon;Chung Young-Seek;So Joon-Ho;Kim Junyeon;Jang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.158-164
    • /
    • 2006
  • In this paper, we proposed a new algorithm of the inverse scattering for the reconstruction of unknown dielectric scatterers using the finite-difference time-domain method and the design sensitivity analysis. We introduced the design sensitivity analysis based on the gradient information for the fast convergence of the reconstruction. By introducing the adjoint variable method for the efficient calculation, we derived the adjoint variable equation. As an optimal algorithm, we used the steepest descent method and reconstructed the dielectric targets using the iterative estimation. To verify our algorithm, we will show the numerical examples for the two-dimensional $TM^2$ cases.

Depth-map Preprocessing Algorithm Using Two Step Boundary Detection for Boundary Noise Removal (경계 잡음 제거를 위한 2단계 경계 탐색 기반의 깊이지도 전처리 알고리즘)

  • Pak, Young-Gil;Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.555-564
    • /
    • 2014
  • The boundary noise in image syntheses using DIBR consists of noisy pixels that are separated from foreground objects into background region. It is generated mainly by edge misalignment between the reference image and depth map or blurred edge in the reference image. Since hole areas are generally filled with neighboring pixels, boundary noise adjacent to the hole is the main cause of quality degradation in synthesized images. To solve this problem, a new boundary noise removal algorithm using a preprocessing of the depth map is proposed in this paper. The most common way to eliminate boundary noise caused by boundary misalignment is to modify depth map so that the boundary of the depth map can be matched to that of the reference image. Most conventional methods, however, show poor performances of boundary detection especially in blurred edge, because they are based on a simple boundary search algorithm which exploits signal gradient. In the proposed method, a two-step hierarchical approach for boundary detection is adopted which enables effective boundary detection between the transition and background regions. Experimental results show that the proposed method outperforms conventional ones subjectively and objectively.