• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.023 seconds

Two Wheeler Recognition Using the Correlation Coefficient for Histogram of Oriented Gradients to Apply Intelligent Wheelchair (지능형 휠체어 적용을 위한 기울기 히스토그램의 상관계수를 이용한 도로위의 이륜차 인식)

  • Kim, Bum-Koog;Park, Sang-Hee;Lee, Yeung-Hak;Lee, Gang-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.336-344
    • /
    • 2011
  • This article describes a new recognition algorithm using correlation coefficient for intelligent wheelchair to avoid collision for elderly or disabled people. The correlation coefficient can be used to represent the relationship of two different areas. The algorithm has three steps: Firstly, we extract an edge vector using the Histogram of Oriented Gradients(HOG) which includes gradient information and unique magnitude for each cell. From this result, the correlation coefficients are calculated between one cell and others. Secondly, correlation coefficients are used as the weighting factors for normalizing the HOG cell. And finally, these features are used to classify or detect variable and complicated shapes of two wheelers using Adaboost algorithm. In this paper, we propose a new feature vectors which is calculated by weighted cell unit to classify with multiple view-based shapes: frontal, rear and side views($60^{\circ}$, $90^{\circ}$ and mixed angle). Our experimental results show that two wheeler detection system based on a proposed approach leads to a higher detection accuracy than the method using traditional features in a similar detection time.

Fault Diagnosis for Rotating Machine Using Feature Extraction and Minimum Detection Error Algorithm (특징 추출과 검출 오차 최소화 알고리듬을 이용한 회전기계의 결함 진단)

  • Chong, Ui-pil;Cho, Sang-jin;Lee, Jae-yeal
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.27-33
    • /
    • 2006
  • Fault diagnosis and condition monitoring for rotating machines are important for efficiency and accident prevention. The process of fault diagnosis is to extract the feature of signals and to classify each state. Conventionally, fault diagnosis has been developed by combining signal processing techniques for spectral analysis and pattern recognition, however these methods are not able to diagnose correctly for certain rotating machines and some faulty phenomena. In this paper, we add a minimum detection error algorithm to the previous method to reduce detection error rate. Vibration signals of the induction motor are measured and divided into subband signals. Each subband signal is processed to obtain the RMS, standard deviation and the statistic data for constructing the feature extraction vectors. We make a study of the fault diagnosis system that the feature extraction vectors are applied to K-means clustering algorithm and minimum detection error algorithm.

Edge Detection Method using Modified Coefficient Masks (변형된 계수 마스크를 이용한 에지 검출 방법)

  • Lee, Chang-Young;Chung, Suk-Moon;Kim, Nam-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.218-223
    • /
    • 2013
  • The performances of previous edge detection methods such as Sobel, Prewitt, and LoG(Laplacian of Gaussian) are insufficient for images degraded in AWGN(additive white Gaussian noise). Therefore, in this paper, we proposed an edge detection algorithm using a modified coefficient masks with gradient masks and distance weight mask. In order to confirm and verify the performance of the proposed algorithm, we simulated and compared proposed algorithm to conventional methods on various standard images added AWGN with a standard deviation ${\sigma}$=15, 30 and proposed algorithm shows superior edge detection characteristics in processed images.

Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm (보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피)

  • Lee, Wonsuk;Hong, Seongil;Park, Gyuhyun;Kang, Younsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.

Minimization of a Cogging Torque for an Interior Permanent Magnet Synchronous Machine using a Novel Hybrid Optimization Algorithm

  • Kim, Il-Woo;Woo, Dong-Kyun;Lim, Dong-Kuk;Jung, Sang-Yong;Lee, Cheol-Gyun;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.859-865
    • /
    • 2014
  • Optimization of an electric machine is mainly a nonlinear multi-modal problem. For the optimization of the multi-modal problem, many function calls are required with much consumption of time. To address this problem, this paper proposes a novel hybrid algorithm in which function calls are less than conventional methods. Specifically, the proposed method uses the kriging metamodel and the fill-blank technique to find an approximated solution in a whole problem region. To increase the convergence speed in local peaks, a parallel gradient assisted simplex method is proposed and combined with the kriging meta-model. The correctness and usefulness of the proposed hybrid algorithm is verified through a mathematical test function and applied into the practical optimization as the cogging torque minimization for an interior permanent magnet synchronous machine.

Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization (언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용)

  • Kwon Oh-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • Recurrent neural networks(RNNs) trained with gradient based such as real time recurrent learning(RTRL) has a drawback of slor convergence rate. This algorithm also needs the derivative calculation which is not trivialized in error back propagation process. In this paper a derivative free Kalman filter, so called the unscented Kalman filter(UKF), for training a fully connected RNN is presented in a state space formulation of the system. A derivative free Kalman filler learning algorithm makes the RNN have fast convergence speed and good tracking performance without the derivative computation. Through experiments of nonlinear channel equalization, performance of the RNNs with a derivative free Kalman filter teaming algorithm is evaluated.

Yaw Moment Control for Modification of Steering Characteristic in Rear-driven Vehicle with Front In-wheel Motors (전륜 인휠모터 후륜구동 차량의 선회 특성 변형을 위한 요모멘트 제어)

  • Cha, Hyunsoo;Joa, Eunhyek;Park, Kwanwoo;Yi, Kyongsu;Park, Jaeyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.6-13
    • /
    • 2021
  • This paper presents yaw moment control for modification of steering characteristic in rear-driven vehicle with front in-wheel motors (IWMs). The proposed control algorithm is designed to modify yaw rate response of the test vehicle. General approach for modification of steering characteristic is to define the desired yaw rate and track the yaw rate. This yaw rate tracking method can cause the chattering problem because of the IWM actuator response. Large overshoot and settling time in IWM torque response can amplify the oscillation in control input and yaw rate. To resolve these problems, open-loop IWM controller for cornering agility was designed to modify the understeer gradient of the vehicle. The proposed algorithm has been investigated via the computer simulations and the vehicle tests. The performance evaluation has been conducted on dry asphalt using E-segment test vehicle. The performance of the proposed algorithm has been compared to general yaw rate tracking algorithm in the vehicle tests. It has been shown that the proposed control law improved the cornering agility without chattering problem.

Study on Image Processing Techniques Applying Artificial Intelligence-based Gray Scale and RGB scale

  • Lee, Sang-Hyun;Kim, Hyun-Tae
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.252-259
    • /
    • 2022
  • Artificial intelligence is used in fusion with image processing techniques using cameras. Image processing technology is a technology that processes objects in an image received from a camera in real time, and is used in various fields such as security monitoring and medical image analysis. If such image processing reduces the accuracy of recognition, providing incorrect information to medical image analysis, security monitoring, etc. may cause serious problems. Therefore, this paper uses a mixture of YOLOv4-tiny model and image processing algorithm and uses the COCO dataset for learning. The image processing algorithm performs five image processing methods such as normalization, Gaussian distribution, Otsu algorithm, equalization, and gradient operation. For RGB images, three image processing methods are performed: equalization, Gaussian blur, and gamma correction proceed. Among the nine algorithms applied in this paper, the Equalization and Gaussian Blur model showed the highest object detection accuracy of 96%, and the gamma correction (RGB environment) model showed the highest object detection rate of 89% outdoors (daytime). The image binarization model showed the highest object detection rate at 89% outdoors (night).

Extended Snake Algorithm Using Color Variance Energy (컬러 분산 에너지를 이용한 확장 스네이크 알고리즘)

  • Lee, Seung-Tae;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.83-92
    • /
    • 2009
  • In this paper, an extended snake algorithm using color variance energy is proposed for segmenting an interest object in color image. General snake algorithm makes use of energy in image to segment images into a interesting area and background. There are many kinds of energy that can be used by the snake algorithm. The efficiency of the snake algorithm is depend on what kind of energy is used. A general snake algorithm based on active contour model uses the intensity value as an image energy that can be implemented and analyzed easily. But it is sensitive to noises because the image gradient uses a differential operator to get its image energy. And it is difficult for the general snake algorithm to be applied on the complex image background. Therefore, the proposed snake algorithm efficiently segment an interest object on the color image by adding a color variance of the segmented area to the image energy. This paper executed various experiments to segment an interest object on color images with simple or complex background for verifying the performance of the proposed extended snake algorithm. It shows improved accuracy performance about 12.42 %.

Multi-view Image Generation from Stereoscopic Image Features and the Occlusion Region Extraction (가려짐 영역 검출 및 스테레오 영상 내의 특징들을 이용한 다시점 영상 생성)

  • Lee, Wang-Ro;Ko, Min-Soo;Um, Gi-Mun;Cheong, Won-Sik;Hur, Nam-Ho;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.838-850
    • /
    • 2012
  • In this paper, we propose a novel algorithm that generates multi-view images by using various image features obtained from the given stereoscopic images. In the proposed algorithm, we first create an intensity gradient saliency map from the given stereo images. And then we calculate a block-based optical flow that represents the relative movement(disparity) of each block with certain size between left and right images. And we also obtain the disparities of feature points that are extracted by SIFT(scale-invariant We then create a disparity saliency map by combining these extracted disparity features. Disparity saliency map is refined through the occlusion detection and removal of false disparities. Thirdly, we extract straight line segments in order to minimize the distortion of straight lines during the image warping. Finally, we generate multi-view images by grid mesh-based image warping algorithm. Extracted image features are used as constraints during grid mesh-based image warping. The experimental results show that the proposed algorithm performs better than the conventional DIBR algorithm in terms of visual quality.