• 제목/요약/키워드: gradient algorithm

Search Result 1,168, Processing Time 0.204 seconds

Android Malware Detection Using Permission-Based Machine Learning Approach (머신러닝을 이용한 권한 기반 안드로이드 악성코드 탐지)

  • Kang, Seongeun;Long, Nguyen Vu;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.617-623
    • /
    • 2018
  • This study focuses on detection of malicious code through AndroidManifest permissoion feature extracted based on Android static analysis. Features are built on the permissions of AndroidManifest, which can save resources and time for analysis. Malicious app detection model consisted of SVM (support vector machine), NB (Naive Bayes), Gradient Boosting Classifier (GBC) and Logistic Regression model which learned 1,500 normal apps and 500 malicious apps and 98% detection rate. In addition, malicious app family identification is implemented by multi-classifiers model using algorithm SVM, GPC (Gaussian Process Classifier) and GBC (Gradient Boosting Classifier). The learned family identification machine learning model identified 92% of malicious app families.

Intra Prediction Algorithm Using Adaptive Modes (적응모드를 이용한 화면 내 부호화 알고리즘)

  • Lim, Kyungmin;Lee, Jaeho;Kim, Seongwan;Pak, Daehyun;Lee, Sangyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.492-503
    • /
    • 2013
  • H.264/AVC has shown high coding efficiency by using various coding tools, including intra and inter prediction. However, there are still many more redundancy components in intra prediction than in inter prediction. In this paper, a novel intra prediction method is proposed with adaptive mode selection. The combined intra prediction modes and simplified gradient modes are added in order to refine the directional feature and gradation region. Suitable modes are selected according to the neighboring blocks that provide a high compression rate and lower computational complexity. The improvement of the proposed method is 1.96% in terms of the bitrate, 0.25 dB in PSNR, and 1.72 times in terms of the computational complexity.

Improvement of ISAR Autofocusing Performance Based on PGA (PGA(Phase Gradient Autofocus)기반 ISAR영상 자동초점기법 성능개선)

  • Kim, Kwan Sung;Yang, Eun Jung;Kim, Chan Hong;Park, Sung Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.680-687
    • /
    • 2014
  • PGA(phase gradient autofocus) has been widely used to remove motion induced phase errors in the ISAR(inverse synthetic aperture radar) imaging. The critical process for the processing time and image quality is windowing stage in PGA. In this paper, the new method to determine window size based on polynomial least square approximation is proposed. Moreover, dominant range bins are selected for efficient phase error estimation, which improve image quality and speed up convergence. The simulation results show that the proposed algorithm provides high quality ISAR images while computational efficiency of inherent PGA is retained.

A Study on Numerical Optimization Method for Aerodynamic Design (공력설계를 위한 수치최적설계기법의 연구)

  • Jin, Xue-Song;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF

Efficient Calculation for Decision Feedback Algorithms Based on Zero-Error Probability Criterion (영확률 성능기준에 근거한 결정궤환 알고리듬의 효율적인 계산)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.247-252
    • /
    • 2015
  • Adaptive algorithms based on the criterion of zero-error probability (ZEP) have robustness to impulsive noise and their decision feedback (DF) versions are known to compensate effectively for severe multipath channel distortions. However the ZEP-DF algorithm computes several summation operations at each iteration time for each filter section and this plays an obstacle role in practical implementation. In this paper, the ZEP-DF with recursive gradient estimation (RGE) method is proposed and shown to reduce the computational burden of O(N) to a constant which is independent of the sample size N. Also the weight update of the initial state and the steady state is a continuous process without bringing about any propagation of gradient estimation error in DF structure.

An Adaptive PID Controller Design based on a Gradient Descent Learning (경사 감소 학습에 기초한 적응 PID 제어기 설계)

  • Park Jin-Hyun;Kim Hyun-Duck;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.276-282
    • /
    • 2006
  • PID controller has been widely used in industry. Because it has a simple structure and robustness to modeling error. But it is difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose an adaptive PID controller based on a gradient descent learning. This algorithm has a simple structure like conventional PID controller and a robustness to system parameters variation and different velocity command. To verify performances of the proposed adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

The Parameter Auto-tuning of the Reference Model Following Fuzzy Logic Controller (기준모델 추종 퍼지 제어기의 파라메터 자동 동조)

  • Roh, Chung-Min;Suh, Seung-Hyun;Ko, Bong-Woon;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1377-1379
    • /
    • 1996
  • In this paper, each parameter was identified by the gradient descent method to overcome difficulty deciding fuzzy rules of FLC for the unknown process and the type of membership Junctions. Usually PID or optimal control theories have been mostly usee in control field so far. However, optimal control requires much time for calculation because of adaptation for disturbance and nonlinearity. And intricate technique such as MRAS which can be realized only by an expert are limited to be used in the systems requiring rapid and precise response because of comparatively longer calculating time and complicateness. Gradient descent method is a method to find Z minimizing a function about a certain vector Z. And required output of FLC is gained using gradient approaching method in order to adapt control rule parameters of FLC. Simulation proved validation of this algorithm.

  • PDF

Pan evaporation modeling using deep learning theory (Deep learning 이론을 이용한 증발접시 증발량 모형화)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.392-395
    • /
    • 2017
  • 본 연구에서는 일 증발접시 증발량 산정을 위한 딥러닝 (deep learning) 모형의 적용성을 평가하였다. 본 연구에서 적용된 딥러닝 모형은 deep belief network (DBN) 기반 deep neural network (DNN) (DBN-DNN) 모형이다. 모형 적용성 평가를 위하여 부산 관측소에서 측정된 기상자료를 활용하였으며, 증발량과의 상관성이 높은 기상변수들 (일사량, 일조시간, 평균지상온도, 최대기온)의 조합을 고려하여 입력변수집합 (Set 1, Set 2, Set 3)별 모형을 구축하였다. DBN-DNN 모형의 성능은 통계학적 모형성능 평가지표 (coefficient of efficiency, CE; coefficient of determination, $r^2$; root mean square error, RMSE; mean absolute error, MAE)를 이용하여 평가되었으며, 기존의 두가지 형태의 ANN (artificial neural network), 즉 모형학습 시 SGD (stochastic gradient descent) 및 GD (gradient descent)를 각각 적용한 ANN-SGD 및 ANN-GD 모형과 비교하였다. 효과적인 모형학습을 위하여 각 모형의 초매개변수들은 GA (genetic algorithm)를 이용하여 최적화하였다. 그 결과, Set 1에 대하여 ANN-GD1 모형, Set 2에 대하여 DBN-DNN2 모형, Set 3에 대하여 DBN-DNN3 모형이 가장 우수한 모형 성능을 나타내는 것으로 분석되었다. 비록 비교 모형들 사이의 모형성능이 큰 차이를 보이지는 않았으나, 모든 입력집합에 대하여 DBN-DNN3, DBN-DNN2, ANN-SGD3 순으로 모형 효율성이 우수한 것으로 나타났다.

  • PDF

Identification of Vehicle Using Edge Detection (에지 검출에 의한 차량 식별)

  • Shin, SY;Kim, DK;Lee, CW;Lee, HC;Lee, TW;Park, KH
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.382-383
    • /
    • 2016
  • Canny edge detection of the image is composed of four kinds of Gaussian filter, gradient calculation, Non-maximum suppression, and Hypothesis Thresholding. Feature is the ratio between the vehicle body, the windows, and the wheels obtained from the edge image. Features that make the proportion of these vehicles are different for each respective model. We have identified by application of this algorithm where only a small vehicle.

  • PDF

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.