• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.028 seconds

Image deblurring via adaptive proximal conjugate gradient method

  • Pan, Han;Jing, Zhongliang;Li, Minzhe;Dong, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4604-4622
    • /
    • 2015
  • It is not easy to reconstruct the geometrical characteristics of the distorted images captured by the devices. One of the most popular optimization methods is fast iterative shrinkage/ thresholding algorithm. In this paper, to deal with its approximation error and the turbulence of the decrease process, an adaptive proximal conjugate gradient (APCG) framework is proposed. It contains three stages. At first stage, a series of adaptive penalty matrices are generated iterate-to-iterate. Second, to trade off the reconstruction accuracy and the computational complexity of the resulting sub-problem, a practical solution is presented, which is characterized by solving the variable ellipsoidal-norm based sub-problem through exploiting the structure of the problem. Third, a correction step is introduced to improve the estimated accuracy. The numerical experiments of the proposed algorithm, in comparison to the favorable state-of-the-art methods, demonstrate the advantages of the proposed method and its potential.

A Study on Posture Control Algorithm of Performing Consecutive Task for Mobile Manipulator (이동매니퓰레이터의 연속작업 수행을 위한 자세 제어 알고리즘에 관한 연구)

  • Kim, Jong-Iek;Rhyu, Kyeong-Taek;Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.153-160
    • /
    • 2008
  • One of the most important features of the Mobile Manipulator is redundant freedom. Using it's redundant freedom, a Mobile Manipulator can move in various modes, and perform dexterous motions. In this paper, to improve robot job performance, two robots -mobile robot, task robot- are joined together to perform a job, we studied the optimal position and posture of a Mobile Manipulator to achieve a minimum of movement of each robot joint. Kinematics of mobile robot and task robot is solved. Using the mobility of a Mobile robot, the weight vector of robots is determined. Using the Gradient method, global motion trajectory is minimized, so the job which the Mobile Manipulator performs is optimized. The proposed algorithm is verified with PURL-II which is Mobile Manipulator combined Mobile robot and task robot, and the results are discussed.

  • PDF

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

Automatic Extraction of Road Network using GDPA (Gradient Direction Profile Algorithm) for Transportation Geographic Analysis

  • Lee, Ki-won;Yu, Young-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.775-779
    • /
    • 2002
  • Currently, high-resolution satellite imagery such as KOMPSAT and IKONOS has been tentatively utilized to various types of urban engineering problems such as transportation planning, site planning, and utility management. This approach aims at software development and followed applications of remotely sensed imagery to transportation geographic analysis. At first, GDPA (Gradient Direction Profile Algorithm) and main modules in it are overviewed, and newly implemented results under MS visual programming environment are presented with main user interface, input imagery processing, and internal processing steps. Using this software, road network are automatically generated. Furthermore, this road network is used to transportation geographic analysis such as gamma index and road pattern estimation. While, this result, being produced to do-facto format of ESRI-shapefile, is used to several types of road layers to urban/transportation planning problems. In this study, road network using KOMPSAT EOC imagery and IKONOS imagery are directly compared to multiple road layers with NGI digital map with geo-coordinates, as ground truth; furthermore, accuracy evaluation is also carried out through method of computation of commission and omission error at some target area. Conclusively, the results processed in this study is thought to be one of useful cases for further researches and local government application regarding transportation geographic analysis using remotely sensed data sets.

  • PDF

A Study on Image restoration Algorithm using LOG function character (LOG함수의 특성을 이용한 영상잡음제거(1))

  • Kwon, Kee-Hong
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.447-456
    • /
    • 2005
  • This paper describes iterative restoration method of restoring blurred images using the LOG compansion function and Conjugate Gradient method. Conventional restoration methods results satisfy the requirement performance for restoring blurred images. but iteration number and convergence velocity increase. This paper proposed an opmtimised iteration restoration method for the images degraded by blurring effect, using the LOG compansion function and Conjugate Gradient method. Here, the LOG compansion function used to improve local properties of the image being restored, made the visual character and convergence velocity of the restored image improved. Throught the simulation results, the author showed that proposed algorithm produced superior performance results by conventional methods.

  • PDF

Automatic Road Extraction by Gradient Direction Profile Algorithm (GDPA) using High-Resolution Satellite Imagery: Experiment Study

  • Lee, Ki-Won;Yu, Young-Chul;Lee, Bong-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 2003
  • In times of the civil uses of commercialized high-resolution satellite imagery, applications of remote sensing have been widely extended to the new fields or the problem solving beyond traditional application domains. Transportation application of this sensor data, related to the automatic or semiautomatic road extraction, is regarded as one of the important issues in uses of remote sensing imagery. Related to these trends, this study focuses on automatic road extraction using Gradient Direction Profile Algorithm (GDPA) scheme, with IKONOS panchromatic imagery having 1 meter resolution. For this, the GDPA scheme and its main modules were reviewed with processing steps and implemented as a prototype software. Using the extracted bi-level image and ground truth coming from actual GIS layer, overall accuracy evaluation and ranking error-assessment were performed. As the processed results, road information can be automatically extracted; by the way, it is pointed out that some user-defined variables should be carefully determined in using high-resolution satellite imagery in the dense or low contrast areas. While, the GDPA method needs additional processing, because direct results using this method do not produce high overall accuracy or ranking value. The main advantage of the GDPA scheme on road features extraction can be noted as its performance and further applicability. This experiment study can be extended into practical application fields related to remote sensing.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

A Fast Digital Elevation Model Extraction Algorithm Using Gradient Correlation (Gradient Correlation을 이용한 고속 수치지형표고 모델 추출 방법)

  • Chul Soo Ye;Byung Min Jeon;Kwae Hi Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.250-261
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the results of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation parameters obtained from modeling and conjugate points from matching. In the DEM generation system, matching procedure holds most of a processing time, therefore to reduce the time for matching, a new fast matching algorithm using gradient correlation and fast similarity measure calculation method is proposed. In this paper, the SPOT satellite images, level 1A 6000$\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM extraction with the satellite images.

CONVERGENCE ANALYSIS OF THE EAPG ALGORITHM FOR NON-NEGATIVE MATRIX FACTORIZATION

  • Yang, Chenxue;Ye, Mao
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.365-380
    • /
    • 2012
  • Non-negative matrix factorization (NMF) is a very efficient method to explain the relationship between functions for finding basis information of multivariate nonnegative data. The multiplicative update (MU) algorithm is a popular approach to solve the NMF problem, but it fails to approach a stationary point and has inner iteration and zero divisor. So the elementwisely alternating projected gradient (eAPG) algorithm was proposed to overcome the defects. In this paper, we use the fact that the equilibrium point is stable to prove the convergence of the eAPG algorithm. By using a classic model, the equilibrium point is obtained and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the eAPG algorithm are obtained, which can accelerate the convergence. In addition, the conditions, which satisfy that the non-zero equilibrium point exists and is stable, can cause that the algorithm converges to different values. Both of them are confirmed in the experiments. And we give the mathematical proof that the eAPG algorithm can reach the appointed precision at the least iterations compared to the MU algorithm. Thus, we theoretically illustrate the advantages of the eAPG algorithm.