• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.023 seconds

A Location Information-based Gradient Routing Algorithm for Wireless Ad Hoc Networks (무선 애드혹 네트워크를 위한 위치정보 기반 기울기 라우팅 알고리즘)

  • Bang, Min-Young;Lee, Bong-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.259-270
    • /
    • 2010
  • In this paper, a Location Information-based Gradient Routing (LIGR) algorithm is proposed for setting up routing path based on physical location information of sensor nodes in wireless ad-hoc networks. LIGR algorithm reduces the unnecessary data transmission time, route search time, and propagation delay time of packet by determining the transmission direction and search range through the gradient from the source node to sink node using the physical location information. In addition, the low battery nodes are supposed to have the second or third priority in case of forwarding node selection, which reduces the possibility of selecting the low battery nodes. As a result, the low battery node functions as host node rather than router in the wireless sensor networks. The LIGR protocol performed better than the Logical Grid Routing (LGR) protocol in the average receiving rate, delay time, the average residual energy, and the network processing ratio.

An Efficient Traning of Multilayer Neural Newtorks Using Stochastic Approximation and Conjugate Gradient Method (확률적 근사법과 공액기울기법을 이용한 다층신경망의 효율적인 학습)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.98-106
    • /
    • 1998
  • This paper proposes an efficient learning algorithm for improving the training performance of the neural network. The proposed method improves the training performance by applying the backpropagation algorithm of a global optimization method which is a hybrid of a stochastic approximation and a conjugate gradient method. The approximate initial point for f a ~gtl obal optimization is estimated first by applying the stochastic approximation, and then the conjugate gradient method, which is the fast gradient descent method, is applied for a high speed optimization. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to those of the conventional backpropagation and the backpropagation algorithm which is a hyhrid of the stochastic approximation and steepest descent method.

  • PDF

Intensity Gradient filter and Median Filter based Video Sequence Deinterlacing Using Texture Detection (텍스쳐 감지를 이용한 화소값 기울기 필터 및 중간값 필터 기반의 비디오 시퀀스 디인터레이싱)

  • Kang, Kun-Hwa;Ku, Su-Il;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.371-379
    • /
    • 2009
  • In this paper, we proposed new de-interlacing algorithm for video data using intensity gradient filter and median filter with texture detection in the image block. We first introduce the texture detection. According to texture detection, the current region is determined into smooth region or texture region. In case that the smooth region interpolated by median filter. In addition, in case of the texture region, we calculate missing pixel value using intensity gradient filter. Therefore, we analyze the local region feature using the texture detection and classify each missing pixel into two categories. And then, based on the classification result, a different de-interlacing algorithm is activated in order to obtain the best performance. Experimental results show that the proposed algorithm performs well with a variety of moving sequences compared with conventional intra-field method in the literature.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm (Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화)

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF

An Improved Multiplicative Updating Algorithm for Nonnegative Independent Component Analysis

  • Li, Hui;Shen, Yue-Hong;Wang, Jian-Gong
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.193-199
    • /
    • 2013
  • This paper addresses nonnegative independent component analysis (NICA), with the aim to realize the blind separation of nonnegative well-grounded independent source signals, which arises in many practical applications but is hardly ever explored. Recently, Bertrand and Moonen presented a multiplicative NICA (M-NICA) algorithm using multiplicative update and subspace projection. Based on the principle of the mutual correlation minimization, we propose another novel cost function to evaluate the diagonalization level of the correlation matrix, and apply the multiplicative exponentiated gradient (EG) descent update to it to maintain nonnegativity. An efficient approach referred to as the EG-NICA algorithm is derived and its validity is confirmed by numerous simulations conducted on different types of source signals. Results show that the separation performance of the proposed EG-NICA algorithm is superior to that of the previous M-NICA algorithm, with a better unmixing accuracy. In addition, its convergence speed is adjustable by an appropriate user-defined learning rate.

Efficient Learning Algorithm using Structural Hybrid of Multilayer Neural Networks and Gaussian Potential Function Networks (다층 신경회로망과 가우시안 포텐샬 함수 네트워크의 구조적 결합을 이용한 효율적인 학습 방법)

  • 박상봉;박래정;박철훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2418-2425
    • /
    • 1994
  • Although the error backpropagation(EBP) algorithm based on the gradient descent method is a widely-used learning algorithm of neural networks, learning sometimes takes a long time to acquire accuracy. This paper develops a novel learning method to alleviate the problems of EBP algorithm such as local minima, slow speed, and size of structure and thus to improve performance by adopting other new networks. Gaussian Potential Function networks(GPFN), in parallel with multilayer neural networks. Empirical simulations show the efficacy of the proposed algorithm in function approximation, which enables us to train networks faster with the better generalization capabilities.

  • PDF

Design of New Channel Adaptive Equalizer for Digital TV (디지털 TV에 적합한 새로운 구조의 채널 적응 등화기 설계)

  • Baek, Deok-Soo;Lee, Wan-Bum;Kim, Hyeoung-Kyun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.17-28
    • /
    • 2002
  • Recently, the study on non-linear equalization, self-recovering equalization using the neural Network structure or Fuzzy logic, is lively in progress. In this thesis, if the value of error difference is large, coefficient adaptation rate is bigger, and if being small, it is smaller. We proposed the new FSG(Fuzzy Stochastic Gradient)/CMA algorithm combining TS(Tagaki-Sugeno) fuzzy model having fast convergence rate and low mean square error(MSE) and CMA(Constant Modulus Algorithm) which is prone to ISI and insensitive to phase alteration. As a simulation result of the designed channel adaptive equalizer using the proposed FSG/CMA algorithm, it is shown that SNR is improved about 3.5dB comparing to the conventional algorithm. 

Optimization of Redundancy by using Genetic Algorithm for Reliability of Plant Protection Controller (플랜트 보호 제어기의 신뢰도분석과 유전알고리듬을 이용한 다중성의 최적화)

  • Yu, Dong-Wan;Kim, Dong-Hun;Park, Hui-Yun;Gu, In-Su;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.504-511
    • /
    • 2000
  • The reliability of system is to become a important concern in developed industry. The controller based on the reliability is so important position. PPC(Plant Protection Controller) is for plant protection and human life by fault detection and control action against the transient condition of plant. The protection system of the nuclear reactor and chemical reactor are representative of PPC. This paper presents analysis of PPC relaibility formal problem statement of optimal redundancy based on the reliability for PPC. And the problem is optimized by genetic algorithm, The genetic algorithms is useful algorithm in case of large searching complex gradient existence local minimum. The genetic algorithms is useful algorithm is case of large searching complex gradient existence local minimum. The ability and effectiveness of the proposed optimization is demonstrated by the target reliability of one channel. PPC. using the failure rate based on the MIL-HDBK-217

  • PDF

Indirect Inspection Signal Diagnosis of Buried Pipe Coating Flaws Using Deep Learning Algorithm (딥러닝 알고리즘을 이용한 매설 배관 피복 결함의 간접 검사 신호 진단에 관한 연구)

  • Sang Jin Cho;Young-Jin Oh;Soo Young Shin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.