• Title/Summary/Keyword: gradient algorithm

Search Result 1,168, Processing Time 0.035 seconds

Application of Machine Learning Techniques for Problematic Smartphone Use (스마트폰 과의존 판별을 위한 기계 학습 기법의 응용)

  • Kim, Woo-sung;Han, Jun-hee
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.3
    • /
    • pp.293-309
    • /
    • 2022
  • Purpose - The purpose of this study is to explore the possibility of predicting the degree of smartphone overdependence based on mobile phone usage patterns. Design/methodology/approach - In this study, a survey conducted by Korea Internet and Security Agency(KISA) called "problematic smartphone use survey" was analyzed. The survey consists of 180 questions, and data were collected from 29,712 participants. Based on the data on the smartphone usage pattern obtained through the questionnaire, the smartphone addiction level was predicted using machine learning techniques. k-NN, gradient boosting, XGBoost, CatBoost, AdaBoost and random forest algorithms were employed. Findings - First, while various factors together influence the smartphone overdependence level, the results show that all machine learning techniques perform well to predict the smartphone overdependence level. Especially, we focus on the features which can be obtained from the smartphone log data (without psychological factors). It means that our results can be a basis for diagnostic programs to detect problematic smartphone use. Second, the results show that information on users' age, marriage and smartphone usage patterns can be used as predictors to determine whether users are addicted to smartphones. Other demographic characteristics such as sex or region did not appear to significantly affect smartphone overdependence levels. Research implications or Originality - While there are some studies that predict smartphone overdependence level using machine learning techniques, but the studies only present algorithm performance based on survey data. In this study, based on the information gain measure, questions that have more influence on the smartphone overdependence level are presented, and the performance of algorithms according to the questions is compared. Through the results of this study, it is shown that smartphone overdependence level can be predicted with less information if questions about smartphone use are given appropriately.

Income prediction of apple and pear farmers in Chungnam area by automatic machine learning with H2O.AI

  • Hyundong, Jang;Sounghun, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.619-627
    • /
    • 2022
  • In Korea, apples and pears are among the most important agricultural products to farmers who seek to earn money as income. Generally, farmers make decisions at various stages to maximize their income but they do not always know exactly which option will be the best one. Many previous studies were conducted to solve this problem by predicting farmers' income structure, but researchers are still exploring better approaches. Currently, machine learning technology is gaining attention as one of the new approaches for farmers' income prediction. The machine learning technique is a methodology using an algorithm that can learn independently through data. As the level of computer science develops, the performance of machine learning techniques is also improving. The purpose of this study is to predict the income structure of apples and pears using the automatic machine learning solution H2O.AI and to present some implications for apple and pear farmers. The automatic machine learning solution H2O.AI can save time and effort compared to the conventional machine learning techniques such as scikit-learn, because it works automatically to find the best solution. As a result of this research, the following findings are obtained. First, apple farmers should increase their gross income to maximize their income, instead of reducing the cost of growing apples. In particular, apple farmers mainly have to increase production in order to obtain more gross income. As a second-best option, apple farmers should decrease labor and other costs. Second, pear farmers also should increase their gross income to maximize their income but they have to increase the price of pears rather than increasing the production of pears. As a second-best option, pear farmers can decrease labor and other costs.

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

Personalized Diabetes Risk Assessment Through Multifaceted Analysis (PD- RAMA): A Novel Machine Learning Approach to Early Detection and Management of Type 2 Diabetes

  • Gharbi Alshammari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.17-25
    • /
    • 2023
  • The alarming global prevalence of Type 2 Diabetes Mellitus (T2DM) has catalyzed an urgent need for robust, early diagnostic methodologies. This study unveils a pioneering approach to predicting T2DM, employing the Extreme Gradient Boosting (XGBoost) algorithm, renowned for its predictive accuracy and computational efficiency. The investigation harnesses a meticulously curated dataset of 4303 samples, extracted from a comprehensive Chinese research study, scrupulously aligned with the World Health Organization's indicators and standards. The dataset encapsulates a multifaceted spectrum of clinical, demographic, and lifestyle attributes. Through an intricate process of hyperparameter optimization, the XGBoost model exhibited an unparalleled best score, elucidating a distinctive combination of parameters such as a learning rate of 0.1, max depth of 3, 150 estimators, and specific colsample strategies. The model's validation accuracy of 0.957, coupled with a sensitivity of 0.9898 and specificity of 0.8897, underlines its robustness in classifying T2DM. A detailed analysis of the confusion matrix further substantiated the model's diagnostic prowess, with an F1-score of 0.9308, illustrating its balanced performance in true positive and negative classifications. The precision and recall metrics provided nuanced insights into the model's ability to minimize false predictions, thereby enhancing its clinical applicability. The research findings not only underline the remarkable efficacy of XGBoost in T2DM prediction but also contribute to the burgeoning field of machine learning applications in personalized healthcare. By elucidating a novel paradigm that accentuates the synergistic integration of multifaceted clinical parameters, this study fosters a promising avenue for precise early detection, risk stratification, and patient-centric intervention in diabetes care. The research serves as a beacon, inspiring further exploration and innovation in leveraging advanced analytical techniques for transformative impacts on predictive diagnostics and chronic disease management.

Prediction of Stunting Among Under-5 Children in Rwanda Using Machine Learning Techniques

  • Similien Ndagijimana;Ignace Habimana Kabano;Emmanuel Masabo;Jean Marie Ntaganda
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • Objectives: Rwanda reported a stunting rate of 33% in 2020, decreasing from 38% in 2015; however, stunting remains an issue. Globally, child deaths from malnutrition stand at 45%. The best options for the early detection and treatment of stunting should be made a community policy priority, and health services remain an issue. Hence, this research aimed to develop a model for predicting stunting in Rwandan children. Methods: The Rwanda Demographic and Health Survey 2019-2020 was used as secondary data. Stratified 10-fold cross-validation was used, and different machine learning classifiers were trained to predict stunting status. The prediction models were compared using different metrics, and the best model was chosen. Results: The best model was developed with the gradient boosting classifier algorithm, with a training accuracy of 80.49% based on the performance indicators of several models. Based on a confusion matrix, the test accuracy, sensitivity, specificity, and F1 were calculated, yielding the model's ability to classify stunting cases correctly at 79.33%, identify stunted children accurately at 72.51%, and categorize non-stunted children correctly at 94.49%, with an area under the curve of 0.89. The model found that the mother's height, television, the child's age, province, mother's education, birth weight, and childbirth size were the most important predictors of stunting status. Conclusions: Therefore, machine-learning techniques may be used in Rwanda to construct an accurate model that can detect the early stages of stunting and offer the best predictive attributes to help prevent and control stunting in under five Rwandan children.

Machine Learning Model for Recommending Products and Estimating Sales Prices of Reverse Direct Purchase (역직구 상품 추천 및 판매가 추정을 위한 머신러닝 모델)

  • Kyu Ik Kim;Berdibayev Yergali;Soo Hyung Kim;Jin Suk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.176-182
    • /
    • 2023
  • With about 80% of the global economy expected to shift to the global market by 2030, exports of reverse direct purchase products, in which foreign consumers purchase products from online shopping malls in Korea, are growing 55% annually. As of 2021, sales of reverse direct purchases in South Korea increased 50.6% from the previous year, surpassing 40 million. In order for domestic SMEs(Small and medium sized enterprises) to enter overseas markets, it is important to come up with export strategies based on various market analysis information, but for domestic small and medium-sized sellers, entry barriers are high, such as lack of information on overseas markets and difficulty in selecting local preferred products and determining competitive sales prices. This study develops an AI-based product recommendation and sales price estimation model to collect and analyze global shopping malls and product trends to provide marketing information that presents promising and appropriate product sales prices to small and medium-sized sellers who have difficulty collecting global market information. The product recommendation model is based on the LTR (Learning To Rank) methodology. As a result of comparing performance with nDCG, the Pair-wise-based XGBoost-LambdaMART Model was measured to be excellent. The sales price estimation model uses a regression algorithm. According to the R-Squared value, the Light Gradient Boosting Machine performs best in this model.

Machine Learning Algorithm for Estimating Ink Usage (머신러닝을 통한 잉크 필요량 예측 알고리즘)

  • Se Wook Kwon;Young Joo Hyun;Hyun Chul Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Research and interest in sustainable printing are increasing in the packaging printing industry. Currently, predicting the amount of ink required for each work is based on the experience and intuition of field workers. Suppose the amount of ink produced is more than necessary. In this case, the rest of the ink cannot be reused and is discarded, adversely affecting the company's productivity and environment. Nowadays, machine learning models can be used to figure out this problem. This study compares the ink usage prediction machine learning models. A simple linear regression model, Multiple Regression Analysis, cannot reflect the nonlinear relationship between the variables required for packaging printing, so there is a limit to accurately predicting the amount of ink needed. This study has established various prediction models which are based on CART (Classification and Regression Tree), such as Decision Tree, Random Forest, Gradient Boosting Machine, and XGBoost. The accuracy of the models is determined by the K-fold cross-validation. Error metrics such as root mean squared error, mean absolute error, and R-squared are employed to evaluate estimation models' correctness. Among these models, XGBoost model has the highest prediction accuracy and can reduce 2134 (g) of wasted ink for each work. Thus, this study motivates machine learning's potential to help advance productivity and protect the environment.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Development of wound segmentation deep learning algorithm (딥러닝을 이용한 창상 분할 알고리즘 )

  • Hyunyoung Kang;Yeon-Woo Heo;Jae Joon Jeon;Seung-Won Jung;Jiye Kim;Sung Bin Park
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.90-94
    • /
    • 2024
  • Diagnosing wounds presents a significant challenge in clinical settings due to its complexity and the subjective assessments by clinicians. Wound deep learning algorithms quantitatively assess wounds, overcoming these challenges. However, a limitation in existing research is reliance on specific datasets. To address this limitation, we created a comprehensive dataset by combining open dataset with self-produced dataset to enhance clinical applicability. In the annotation process, machine learning based on Gradient Vector Flow (GVF) was utilized to improve objectivity and efficiency over time. Furthermore, the deep learning model was equipped U-net with residual blocks. Significant improvements were observed using the input dataset with images cropped to contain only the wound region of interest (ROI), as opposed to original sized dataset. As a result, the Dice score remarkably increased from 0.80 using the original dataset to 0.89 using the wound ROI crop dataset. This study highlights the need for diverse research using comprehensive datasets. In future study, we aim to further enhance and diversify our dataset to encompass different environments and ethnicities.