• 제목/요약/키워드: gradient Ricci soliton

검색결과 36건 처리시간 0.02초

η-RICCI SOLITONS ON TRANS-SASAKIAN MANIFOLDS WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Bahadir, Oguzhan;Siddiqi, Mohd Danish;Akyol, Mehmet Akif
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.601-620
    • /
    • 2020
  • In this paper, firstly we discuss some basic axioms of trans Sasakian manifolds. Later, the trans-Sasakian manifold with quarter symmetric non-metric connection are studied and its curvature tensor and Ricci tensor are calculated. Also, we study the η-Ricci solitons on a Trans-Sasakian Manifolds with quartersymmetric non-metric connection. Indeed, we investigated that the Ricci and η-Ricci solitons with quarter-symmetric non-metric connection satisfying the conditions ${\tilde{R}}.{\tilde{S}}$ = 0. In a particular case, when the potential vector field ξ of the η-Ricci soliton is of gradient type ξ = grad(ψ), we derive, from the η-Ricci soliton equation, a Laplacian equation satisfied by ψ. Finally, we furnish an example for trans-Sasakian manifolds with quarter-symmetric non-metric connection admitting the η-Ricci solitons.

SOLITON FUNCTIONS AND RICCI CURVATURES OF D-HOMOTHETICALLY DEFORMED f-KENMOTSU ALMOST RIEMANN SOLITONS

  • Urmila Biswas;Avijit Sarkar
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1215-1231
    • /
    • 2023
  • The present article contains the study of D-homothetically deformed f-Kenmotsu manifolds. Some fundamental results on the deformed spaces have been deduced. Some basic properties of the Riemannian metric as an inner product on both the original and deformed spaces have been established. Finally, applying the obtained results, soliton functions, Ricci curvatures and scalar curvatures of almost Riemann solitons with several kinds of potential vector fields on the deformed spaces have been characterized.

GRADIENT RICCI SOLITONS WITH HALF HARMONIC WEYL CURVATURE AND TWO RICCI EIGENVALUES

  • Kang, Yutae;Kim, Jongsu
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.585-594
    • /
    • 2022
  • In this article we classify four dimensional gradient Ricci solitons (M, g, f) with half harmonic Weyl curvature and at most two distinct Ricci-eigenvalues at each point. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, (V, g) is isometric to one of the following: (i) an Einstein manifold. (ii) a domain in the Riemannian product (ℝ2, g0) × (N, ${\tilde{g}}$), where g0 is the flat metric on ℝ2 and (N, ${\tilde{g}}$) is a two dimensional Riemannian manifold of constant curvature λ ≠ 0. (iii) a domain in ℝ × W with the warped product metric $ds^2+h(s)^2{\tilde{g}}$, where ${\tilde{g}}$ is a constant curved metric on a three dimensional manifold W.

TIME ANALYTICITY FOR THE HEAT EQUATION UNDER BAKRY-ÉMERY RICCI CURVATURE CONDITION

  • Ling Wu
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1673-1685
    • /
    • 2023
  • Inspired by Hongjie Dong and Qi S. Zhang's article [3], we find that the analyticity in time for a smooth solution of the heat equation with exponential quadratic growth in the space variable can be extended to any complete noncompact Riemannian manifolds with Bakry-Émery Ricci curvature bounded below and the potential function being of at most quadratic growth. Therefore, our result holds on all gradient Ricci solitons. As a corollary, we give a necessary and sufficient condition on the solvability of the backward heat equation in a class of functions with the similar growth condition. In addition, we also consider the solution in certain Lp spaces with p ∈ [2, +∞) and prove its analyticity with respect to time.

GRADIENT ESTIMATES AND HARNACK INEQUALITES OF NONLINEAR HEAT EQUATIONS FOR THE V -LAPLACIAN

  • Dung, Ha Tuan
    • 대한수학회지
    • /
    • 제55권6호
    • /
    • pp.1285-1303
    • /
    • 2018
  • This note is motivated by gradient estimates of Li-Yau, Hamilton, and Souplet-Zhang for heat equations. In this paper, our aim is to investigate Yamabe equations and a non linear heat equation arising from gradient Ricci soliton. We will apply Bochner technique and maximal principle to derive gradient estimates of the general non-linear heat equation on Riemannian manifolds. As their consequence, we give several applications to study heat equation and Yamabe equation such as Harnack type inequalities, gradient estimates, Liouville type results.

*-CONFORMAL RICCI SOLITONS ON ALMOST COKÄHLER MANIFOLDS

  • Tarak Mandal;Avijit Sarkar
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.865-880
    • /
    • 2023
  • The main intention of the current paper is to characterize certain properties of *-conformal Ricci solitons on non-coKähler (𝜅, 𝜇)-almost coKähler manifolds. At first, we find that there does not exist *-conformal Ricci soliton if the potential vector field is the Reeb vector field θ. We also prove that the non-coKähler (𝜅, 𝜇)-almost coKähler manifolds admit *-conformal Ricci solitons if the potential vector field is the infinitesimal contact transformation. It is also studied that there does not exist *-conformal gradient Ricci solitons on the said manifolds. An example has been constructed to verify the obtained results.