• Title/Summary/Keyword: graded material parameter

Search Result 194, Processing Time 0.024 seconds

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Thermal-induced nonlocal vibration characteristics of heterogeneous beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.93-128
    • /
    • 2017
  • In this paper, thermal vibration behavior of nanoscale beams made of functionally graded (FG) materials subjected to various types of thermal loading are investigated. A Reddy shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors is employed. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predict correctly the vibration responses of FG nanobeams. The effects of nonlocal parameter, material graduation, mode number, slenderness ratio and thermal loading on vibration behavior of the nanobeams are studied in detail.

Free vibration of deep curved FG nano-beam based on modified couple stress theory

  • Rahmani, O.;Hosseini, S.A.H.;Ghoytasi, I.;Golmohammadi, H.
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.607-620
    • /
    • 2018
  • Vibration analysis of deep curved FG nano-beam has been carried out based on modified couple stress theory. Material properties of curved Timoshenko beam are assumed to be functionally graded in radial direction. Governing equations of motion and related boundary conditions have been obtained via Hamilton's principle. In a parametric study, influence of length scale parameter, aspect ratio, gradient index, opening angle, mode number and interactive influences of these parameters on natural frequency of the beam, have been investigated. It was found that, considering geometrical deepness term leads to an increase in sensitivity of natural frequency about variation of aforementioned parameters.

A unified formulation for modeling of inhomogeneous nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.369-377
    • /
    • 2018
  • In this article, buckling and free vibration of functionally graded (FG) nanobeams resting on elastic foundation are investigated by developing various higher order beam theories which capture shear deformation influences through the thickness of the beam without the need for shear correction factors. The elastic foundation is modeled as linear Winkler springs as well as Pasternak shear layer. The material properties of FG nanobeam are supposed to change gradually along the thickness through the Mori-Tanaka model. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. From Hamilton's principle, the nonlocal governing equations of motion are derived and then solved applying analytical solution. To verify the validity of the developed theories, the results of the present work are compared with those available in literature. The effects of shear deformation, elastic foundation, gradient index, nonlocal parameter and slenderness ratio on the buckling and free vibration behavior of FG nanobeams are studied.

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

Buckling analysis of functionally graded plates resting on elastic foundation by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • Functionally graded material (FGM) has been spotlighted as an advanced composite material due to its excellent thermo-mechanical performance. And the buckling of FGM resting on elastic foundations has been a challenging subject because its behavior is directly connected to the structural safety. In this context, this paper is concerned with a numerical buckling analysis of metal-ceramic FG plates resting on a two-parameter (Pasternak-type) elastic foundation. The buckling problem is formulated based on the neutral surface and the (1,1,0) hierarchical model, and it is numerically approximated by 2-D natural element method (NEM) which provides a high accuracy even for coarse grid. The derived eigenvalue equations are solved by employing Lanczos and Jacobi algorithms. The numerical results are compared with the reference solutions through the benchmark test, from which the reliability of present numerical method has been verified. Using the developed numerical method, the critical buckling loads of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu;Zhen Huang
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.103-116
    • /
    • 2024
  • Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.