• Title/Summary/Keyword: graded material parameter

Search Result 194, Processing Time 0.024 seconds

Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator

  • Rostami, Rasoul;Mohamadimehr, Mehdi;Rahaghi, Mohsen Irani
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.225-237
    • /
    • 2019
  • In this research, the dynamic stability and nonlinear vibration behavior of a smart rotating sandwich cylindrical shell is studied. The core of the structure is a functionally graded material (FGM) which is integrated by functionally graded piezoelectric material (FGPM) layers subjected to electric field. The piezoelectric layers at the inner and outer surfaces used as actuator and sensor, respectively. By applying the energy method and Hamilton's principle, the governing equations of sandwich cylindrical shell derived based on first-order shear deformation theory (FSDT). The Galerkin method is used to discriminate the motion equations and the equations are converted to the form of the ordinary differential equations in terms of time. The perturbation method is employed to find the relation between nonlinear frequency and the amplitude of vibration. The main objective of this research is to determine the nonlinear frequencies and nonlinear vibration control by using sensor and actuator layers. The effects of geometrical parameters, power law index of core, sensor and actuator layers, angular velocity and scale transformation parameter on nonlinear frequency-amplitude response diagram and dynamic stability of sandwich cylindrical shell are investigated. The results of this research can be used to design and vibration control of rotating systems in various industries such as aircraft, biomechanics and automobile manufacturing.

Dynamic modeling of smart magneto-electro-elastic curved nanobeams

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.145-155
    • /
    • 2019
  • In this article, the influence of small scale effects on the free vibration response of curved magneto-electro-elastic functionally graded (MEE-FG) nanobeams has been investigated considering nonlocal elasticity theory. Power-law is used to judge the through thickness material property distribution of MEE nanobeams. The Euler-Bernoulli beam model has been adopted and through Hamilton's principle the Nonlocal governing equations of curved MEE-FG nanobeam are obtained. The analytical solutions are obtained and validated with the results reported in the literature. Several parametric studies are performed to assess the influence of nonlocal parameter, magnetic potential, electric voltage, opening angle, material composition and slenderness ratio on the dynamic behaviour of MEE curved nanobeams. It is believed that the results presented in this article may serve as benchmark results in accurate analysis and design of smart nanostructures.

A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations

  • Soltani, Kheira;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Kaci, Abdelhakim;Benguediab, Mohamed;Tounsi, Abdelouahed;Alhodaly, Mohammed Sh
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.13-29
    • /
    • 2019
  • This work presents the buckling investigation of functionally graded plates resting on two parameter elastic foundations by using a new hyperbolic plate theory. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only four unknowns and which is even less than the first order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT) by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. The governing equations are derived using Hamilton's principle and solved using Navier's steps. The validation of the proposed theoretical model is performed to demonstrate the efficacy of the model. The effects of various parameters like the Winkler and Pasternak modulus coefficients, inhomogeneity parameter, aspect ratio and thickness ratio on the behaviour of the functionally graded plates are studied. It can be concluded that the present theory is not only accurate but also simple in predicting the critical buckling loads of functionally graded plates on elastic foundation.

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A.;Akbas, Seref D.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.713-722
    • /
    • 2020
  • This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate

  • Singh, Abhishek K.;Negi, Anil;Koley, Siddhartha
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.31-44
    • /
    • 2019
  • The present study investigate the compressive stress, shear stress, tensile stress, vertical electrical displacement and horizontal electrical displacement induced due to a load moving with uniform velocity on the free rough surface of an irregular transversely isotropic functionally graded piezoelectric material (FGPM) substrate. The closed form expressions ofsaid induced stresses and electrical displacements for both electrically open condition and electrically short condition have been deduced. The influence of various affecting parameters viz. maximum depth of irregularity, irregularity factor, parameter of functionally gradedness, frictional coefficient of the rough upper surface, piezoelectricity/dielectricity on said induced stresses and electrical displacements have been examined through numerical computation and graphical illustration for both electrically open and short conditions. The comparative analysis on the influence of electrically open and short conditions as well as presence and absence of piezoelectricity on the induced stresses and induced electrical displacements due to a moving load serve as the salient features of the present study. Moreover, some important peculiarities have also been traced out by means of graphs.

A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations

  • Mofareh Hassan Ghazwani;Ali Alnujaie;Pham Van Vinh;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.313-324
    • /
    • 2024
  • The main aims of this study are to develop a new nonlocal quasi-3D theory for the free vibration behaviors of the functionally graded sandwich nanobeams. The sandwich beams consist of a ceramic core and two functionally graded material layers resting on elastic foundations. The two layers, linear spring stiffness and shear layer, are used to model the effects of the elastic foundations. The size-effect is considered using nonlocal elasticity theory. The governing equations of the motion of the functionally graded sandwich nanobeams are obtained via Hamilton's principle in combination with nonlocal elasticity theory. Then the Navier's solution technique is used to solve the governing equations of the motion to achieve the nonlocal free vibration behaviors of the nanobeams. A deep parametric study is also provided to demonstrate the effects of some parameters, such as length-to-height ratio, power-law index, nonlocal parameter, and two parameters of the elastic foundation, on the free vibration behaviors of the functionally graded sandwich nanobeams.

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

On the dynamic behavior of functionally graded cracked beams resting on winkler foundation under moving load

  • Alaa A. Abdelrahman;Mohamed Ashry;Amal E. Alshorbagy;Mohamed A. Eltaher;Waleed S. Abdalla
    • Steel and Composite Structures
    • /
    • v.53 no.2
    • /
    • pp.169-194
    • /
    • 2024
  • Although the excellent characteristics of functionally graded materials (FGMs) cracks could be found due to manufacturing defects or extreme working conditions. The existence of these cracks may threaten the material or structural strength, reliability, and lifetime. Due to high cost and restrictions offered by practical operational features these cracked components couldn't be replaced immediately. Such circumstances lead to the requirement of assessing the dynamic performance of cracked functionally graded structural components especially under moving objects. The present study aims to comprehensively investigate the dynamic behavior of functionally graded cracked Timoshenko beams (FGCTBs) resting on Winkler foundation and subjected to moving load through shear locking free finite elements methodology. The through thickness material distribution is simulated by the exponential gradation law. The geometric discontinuity due to cracks is represented using the massless rotational spring approach. The shear locking phenomena is avoided by using the different interpolation functions orders for both deflections and rotations. Based on Timoshenko beam element, a shear locking free finite elements methodology is developed. The unconditionally stable Newmark procedure is employed to solve the forced vibration problem. Accuracy of the developed procedure is verified by comparing the obtained results with the available results and an excellent agreement is found. Parametric studies are conducted to explore effects of the geometrical, material characteristics, crack geometrical characteristics, the elastic foundation parameter, and the moving load speed on the dynamic behavior for different boundary conditions. Obtained results revealed the significant effect these parameters on the dynamic performance of FGCTBs.

Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory

  • Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.401-415
    • /
    • 2017
  • In this article, hygro-thermo-mechanical vibration and buckling of exponentially graded (EG) nanoplates resting on two-parameter Pasternak foundations are studied using the four-unknown shear deformation plate theory. The material properties are presumed to change only in the thickness direction of the EG nanoplate according to two exponential laws distribution. The boundary conditions of the nanoplate may be simply supported, clamped, free or combination of them. To consider the small scale effect on forced frequencies and buckling, Eringen's differential form of nonlocal elasticity theory is employed. The accuracy of the present study is investigated considering the available solutions in literature. A detailed analysis is executed to study the influences of the plate aspect ratio, side-to-thickness ratio, temperature rise, moisture concentration and volume fraction distributions on the vibration and buckling of the nanoplates.