• Title/Summary/Keyword: graded ideal

Search Result 42, Processing Time 0.02 seconds

ON THE FIRST GENERALIZED HILBERT COEFFICIENT AND DEPTH OF ASSOCIATED GRADED RINGS

  • Mafi, Amir;Naderi, Dler
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.407-417
    • /
    • 2020
  • Let (R, m) be a d-dimensional Cohen-Macaulay local ring with infinite residue field. Let I be an ideal of R that has analytic spread ℓ(I) = d, satisfies the Gd condition, the weak Artin-Nagata property AN-d-2 and m is not an associated prime of R/I. In this paper, we show that if j1(I) = λ(I/J) + λ[R/(Jd-1 :RI+(Jd-2 :RI+I):R m)] + 1, then I has almost minimal j-multiplicity, G(I) is Cohen-Macaulay and rJ(I) is at most 2, where J = (x1, , xd) is a general minimal reduction of I and Ji = (x1, , xi). In addition, the last theorem is in the spirit of a result of Sally who has studied the depth of associated graded rings and minimal reductions for m-primary ideals.

Internal modals interactions analysis in terms of AFG nanorods based on Rayleigh model of nonlinear nonlocal axial behaviour

  • Somaye Jamali Shakhlavi;Shahrokh Hosseini Hashemi;Reza Nazemnezhad
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.557-569
    • /
    • 2024
  • Nonlinear internal modals interactions analysis of axially functionally graded nanorods is evaluated on the basis of nonlocal elasticity theory and Rayleigh beam model for the first time. Functionally graded materials can be determined as nonhomogeneous composites which are obtained by combining of two various materials in order to get a new ideal material. In this research, material properties of nanorods are supposed to be calmly varied along the axial direction. Hamilton's principle is used to derive the equations with consideration of Von-Kármán's geometrically nonlinearity. Harmonic Differential Quadrature (HDQ) and Multiple Scale (MS) solution techniques are used to derive an approximate-analytic solution to the linear and nonlinear free axial vibration problem of non-classical nanorods for clamped-clamped and clamped-free boundary conditions. A parametric study is carried out to indicate the effects of index of AFG, aspect ratio, mode number, internal resonances and nonlinear amplitude on nonlinear nonlocal frequencies of axially functionally graded nanorods. Also, the effects of nonlocal and nonlinear coefficients and AFG index on relationships of internal resonances have been investigated. The presented theatrical-semi analytical model has the ability to predict very suitable results for extracting the internal modal interactions in the AFG nanorod.

Fabrication of Optical Fiber Preform by MCVD Method (MCVD법을 이용한 광섬유 모재의 제작)

  • 이기완;홍봉식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.307-320
    • /
    • 1989
  • This paper presetns new design of the Modified Chemical Vapor Deposition(MCVD) system for optical fiber preform fabrication. It contains a glass working lathe, raw material supplier and exhaust gas treatment apparatus as fundamental instruments for MCVD process, graded index fiber design, characteristic of process and the experimenta arrangement to measure the refractive index profile of MCVD preforms, respectively. From the investigation results, it is shown that an ideal graded index fiber preform does not exhibit a center dip or bump.

  • PDF

NON-EXISTENCE OF SOME ARTINIAN LEVEL O-SEQUENCES OF CODIMENSION 3

  • Shin, Dong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.517-523
    • /
    • 2007
  • Let R/I be an Artinian algebra of codimension 3 with Hilbert function H such that $h_{d-1}>h_d=h_{d+1}$. Ahn and Shin showed that A cannot be level if ${\beta}_{1,d+2}(Gin(I))={\beta}_{2,d+2}(Gin(I))$ where Gin(I) is a generic initial ideal of I. We prove that some certain graded Artinian algebra R/I cannot be level if either ${\beta}_{1,d}(I^{lex})={\beta}_{2,d}(I^{lex})+1\;or\;{\beta}_{1,d+1}(I^{lex})={\beta}_{2,d+1}(I^{lex})\;where\;I^{lex}$ is a lex-segment ideal associated to I.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.

Size-dependent nonlinear pull-in instability of a bi-directional functionally graded microbeam

  • Rahim Vesal;Ahad Amiri
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.501-513
    • /
    • 2024
  • Two-directional functionally graded materials (2D-FGMs) show extraordinary physical properties which makes them ideal candidates for designing smart micro-switches. Pull-in instability is one of the most critical challenges in the design of electrostatically-actuated microswitches. The present research aims to bridge the gap in the static pull-in instability analysis of microswitches composed of 2D-FGM. Euler-Bernoulli beam theory with geometrical nonlinearity effect (i.e. von-Karman nonlinearity) in conjunction with the modified couple stress theory (MCST) are employed for mathematical formulation. The micro-switch is subjected to electrostatic actuation with fringing field effect and Casimir force. Hamilton's principle is utilized to derive the governing equations of the system and corresponding boundary conditions. Due to the extreme nonlinear coupling of the governing equations and boundary conditions as well as the existence of terms with variable coefficients, it was difficult to solve the obtained equations analytically. Therefore, differential quadrature method (DQM) is hired to discretize the obtained nonlinear coupled equations and non-classical boundary conditions. The result is a system of nonlinear coupled algebraic equations, which are solved via Newton-Raphson method. A parametric study is then implemented for clamped-clamped and cantilever switches to explore the static pull-in response of the system. The influences of the FG indexes in two directions, length scale parameter, and initial gap are discussed in detail.

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.

Proportions of the aesthetic African-Caribbean face: idealized ratios, comparison with the golden proportion and perceptions of attractiveness

  • Mantelakis, Angelos;Iosifidis, Michalis;Al-Bitar, Zaid B.;Antoniadis, Vyron;Wertheim, David;Garagiola, Umberto;Naini, Farhad B.
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.20.1-20.10
    • /
    • 2018
  • Background: In the absence of clear guidelines for facial aesthetic surgery, most surgeons rely on expert intuitive judgement when planning aesthetic and reconstructive surgery. One of the most famous theories regarding "ideal" facial proportions is that of the golden proportion. However, there are conflicting opinions as to whether it can be used to assess facial attractiveness. The aim of this investigation was to assess facial ratios of professional black models and to compare the ratios with the golden proportion. Methods: Forty photographs of male and female professional black models were collected. Observers were asked to assign a score from 1 to 10 (1 = not very attractive, 10 = very attractive). A total of 287 responses were analysed for grading behaviour according to various demographic factors by two groups of observers. The best graded photographs were compared with the least well-graded photographs to identify any differences in their facial ratios. The models' facial ratios were calculated and compared with the golden proportion. Results: Differences in grading behaviour were observed amongst the two assessment groups. Only one out of the 12 facial ratios was not significantly different from the golden proportion. Conclusions: Only one facial ratio was observed to be similar to the golden proportion in professional model facial photographs. No correlation was found between facial ratios in professional black models with the golden proportion. It is proposed that an individualistic treatment for each ratio is a rather better method to guide future practice.

EFFECTS OF ADDITIONAL FEEDING REGIMEN FOR THE OFF-THE PASTURE LAMBS ON CARCASS TRAITS AND MEAT QUALITY

  • Lee, Y.B.;Demment, M.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.139-143
    • /
    • 1995
  • Two hundred eighty weaned Targhee lambs were grazed on annual grass-subclover pastures for 84 d under continuous and rotational defoliation grazing system. At the end of the grazing season, twenty lambs weighing 44 kg were slaughtered directly off the pasture, whereas two groups of 20 lambs each were fed either a alfalfa pellet or a 50% alfalfa/50 concentrate pellet for additional 6 wk until they reached an average live weight of 50 kg. Carcass traits and loin chop palatability were compared. Lambs slaughtered directly off the pasture were lighter than desirable market weight and some lambs had less than adequate fat cover and approximately half of them were graded U.S. Good in quality. Overall conformation and leg muscling was inferior and loin chops were less tender, less juicy and less flavorful. The lambs on alfalfa pellets for 6 wk appeared to be ideal in terms of carcass quality (all Choice except one), fat cover and yield grade. They had better taste panel scores in all palatability traits than off-the-pasture lambs, and most loin chops were acceptable. The lambs on a 50% concentrate diet for 6 wk had a higher conformation score and a greater muscling in the legs. Loin chops had more marbling and better palatability than other groups. However, some lambs had an excessive fat cover and lower yield of retail cuts. It was concluded that additional feeding for 6 wk on alfalfa pellets until the live weight reached 50 kg(for Targhee lambs) was the best way of finishing lambs at the end of grazing season in the California rangeland.