• Title/Summary/Keyword: google analytics

Search Result 29, Processing Time 0.025 seconds

Weblog Analysis of University Admissions Website using Google Analytics (구글 애널리틱스를 활용한 대학 입시 홈페이지 웹로그 분석)

  • Su-Hyun Ahn;Sang-Jun Lee
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.95-103
    • /
    • 2024
  • With the rapid decline of the school-age population, the competition for admissions has increased and marketing through digital channels has become more important, so universities are investing more resources in online promotion and communication to recruit new students. This study uses Google Analytics, a web log analysis tool, to track the visitor behavior of a university admissions website and establish a digital marketing strategy based on it. The analysis period was set from July 1, 2023, when Google Analytics 4(GA4) was integrated, to January 10, 2024, when the college admissions process was completed. The analysis revealed interesting patterns such as geographical information based on visitors' access location, devices(operating systems) and browsers used by visitors, acquisition channels through visitors traffic, conversions on pages and screens that visitors engaged with and visitor flow. Based on this study, we expect universities to find ways to strengthen their admission promotion through digital marketing and effectively communicate with applicants to gain a competitive edge.

Data Visualization of R Programming using Google Analytics API (Google Analytics API를 연동한 R 프로그래밍 데이터 시각화)

  • Ahn, Jang-Keun;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.290-293
    • /
    • 2017
  • 최근 IoT 기술발달로 인한 스마트폰 및 대용량 미디어기기 사용증가로 인터넷 네트워크 사용량이 폭발적으로 증가되고 있고, 이러한 데이터 사용량 급증으로 대량의 데이터를 지칭하는 빅데이터 수집 및 분석에 많은 기업과 정부가 주목하고 있다. 빅데이터는 기존에 없던 새로운 데이터의 구축이 아니며, 그동안 축적된 다방면의 방대한 데이터의 집합이라 할 수 있다. 빅데이터의 이용 및 분석에 대한 기업 정부 학계의 수요는 증가하고 있지만, 고난도의 빅데이터 분석을 위한 인프라 구축이 선결과제이어서, 이러한 인프라구축 비용 때문에 빅데이터 분석이 일선 산업분야에 바로 적용하는데 많은 장애요인이 되어 데이터 분석가들의 빅데이터 분석에 애로사항으로 존재하고 있다. 이러한 어려움을 해소하기 위한 방안으로 새로운 인프라 구축 없이 Google Analytics API를 연동한 R 프로그래밍의 데이터 시각화를 활용한 데이터 분석 방안을 제시하고자 한다. 본 연구에서는 구글 애널리틱스 API를 연동하여 사용자 웹사이트의 사용자접속, 사이트운영, 이벤트 발생 등의 데이터를 R 프로그램을 활용하여 사이트 현황을 데이터 시각화로 분석하고 운영중인 웹사이트에 적용 가능한 콘텐츠 개발 방안에 대해 연구하였다.

  • PDF

A Case study analysing the users of archives through web analytics (웹애널리틱스를 이용한 아카이브 이용자 분석 사례 연구)

  • Lee, Hyoeun;Yim, Jin Hee
    • The Korean Journal of Archival Studies
    • /
    • no.45
    • /
    • pp.83-120
    • /
    • 2015
  • Record Information Services is an aggressive action of connecting documentaries focusing on the information needs of user. However, recent studies on the parliament's written information service recognize the necessity that it should segment the user's information requests, and provide personalized service, but have not discussed for specific cases or measures. While the importance of Web services written with the proliferation of information and popularization of the Web is emerging right to know but, it is not being performed properly by lack of sufficient manpower and budget along with lack of recognition in hands-on sites upon the user analysis. So, while increasing the efficiency of the hands-on workers of Record Information Services, the introduction of analytical tools that can be utilized in low budget agencies is needed. Web analytics is to analyze the behavior by analyzing Web logs which web users have left you visit the site. To estimate the behavior they want to request information of the analyzed Web user aims to provide a Web service, the Web service further continued improvement. There are several types that include among them Google Analytics offering a variety of analysis items for free and all over the world, many people are already using. This study introduces a Google Analytics web analytics focused and proposes a service improvement plan with specific web user segmentation analyzes the cases of Korea Democracy Foundation of Open Archives introduces them to the actual institutions.

Key Themes for Multi-Stage Business Analytics Adoption in Organizations

  • Amit Kumar;Bala Krishnamoorthy;Divakar B Kamath
    • Asia pacific journal of information systems
    • /
    • v.30 no.2
    • /
    • pp.397-419
    • /
    • 2020
  • Business analytics is a management tool for achieving significant business performance improvements. Many organizations fail to or only partially achieve their business objectives and goals from business analytics. Business analytics adoption is a multi-stage complex activity consisting of evaluation, adoption, and assimilation stages. Several research papers have been published in the field of business analytics, but the research on multi-stage BA adoption is fewer in number. This study contributes to the scant literature on the multi-stage adoption model by identifying the critical themes for evaluation, adoption, and assimilation stages of business analytics. This study uses the thematic content analysis of peer-reviewed published academic papers as a research technique to explore the key themes of business analytics adoption. This study links the critical themes with the popular theoretical foundations: Resource-Based View (RBV), Dynamic Capabilities, Diffusion of Innovations, and Technology-Organizational-Environmental (TOE) framework. The study identifies twelve major factors categorized into three key themes: organizational characteristics, innovation characteristics, and environmental characteristics. The main organizational factors are top management support, organization data environment, centralized analytics structure, perceived cost, employee skills, and data-based decision making culture. The major innovation characteristics are perceived benefits, complexity, and compatibility, and information technology assets. The environmental factors influencing BA adoption stages are competition and industry pressure. A conceptual framework for the multi-stage BA adoption model is proposed in this study. The findings of this study can assist the practicing managers in developing a stage-wise operational strategy for business analytics adoption. Future research can also attempt to validate the conceptual model proposed in this study.

A Study on Activation Method of Website through Log Analysis -Focused on the website(MMWS) for research the Mediterranean Area- (로그 분석을 통한 웹사이트 활성화 방안에 대한 연구 - 지중해지역 연구를 위한 웹사이트(MMWS)를 중심으로 -)

  • Kang, Ji-Hoon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.907-916
    • /
    • 2017
  • Recently, various studies related to ICT convergence have been made. Recently, various studies related to ICT convergence have been made. In the academic field, the demand for ICT convergence is on the rise. For example, Digital Humanities and Area Informatics are representative. Area Studies means to study the culture of a specific area in an integrated way. In this regard, researchers who specialize in researching overseas area generally use websites to obtain information related to the area. The Multilingual Mediterranean Web Service System(MMWS), which is operated by the Institute for Mediterranean Studies of Busan University of Foreign Studies is a web site that provides professional and general information to researchers or ordinary people studying in the Mediterranean area among overseas area. In this paper, we analyzeoverseas web sites the MMWS and discuss how to activate web sites based on the analysis results. In details, it analyze MMWS through log analysis and use Google Analytics, a log analysis system provided by Google for analysis. Also study how to use ICT convergence contents as a website activation method.

Research in the Direction of Improvement of the Web Site Utilizing Google Analytics (구글 애널리틱스를 활용한 웹 사이트의 개선방안 연구 : 앱팩토리를 대상으로)

  • Kim, Donglim;Lim, Younghwan
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.553-572
    • /
    • 2014
  • In this paper, for the evaluation of the ease of a particular Web site (www.appbelt.net), insert the log tracking code for Google Analytics in a page of the Web site to collect behavioral data of visitor and has studied the improvement measures for the problems of the Web site, after the evaluation of the overall quality of the Web site through the evaluation of Coolcheck. These findings set the target value of the company's priority (importance) companies want to influence the direction of the business judgment are set up correctly, and the user's needs and behavior will be appropriate for the service seems to help improvement.

Understanding the Food Hygiene of Cruise through the Big Data Analytics using the Web Crawling and Text Mining

  • Shuting, Tao;Kang, Byongnam;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.24 no.2
    • /
    • pp.34-43
    • /
    • 2018
  • The objective of this study was to acquire a general and text-based awareness and recognition of cruise food hygiene through big data analytics. For the purpose, this study collected data with conducting the keyword "food hygiene, cruise" on the web pages and news on Google, during October 1st, 2015 to October 1st, 2017 (two years). The data collection was processed by SCTM which is a data collecting and processing program and eventually, 899 kb, approximately 20,000 words were collected. For the data analysis, UCINET 6.0 packaged with visualization tool-Netdraw was utilized. As a result of the data analysis, the words such as jobs, news, showed the high frequency while the results of centrality (Freeman's degree centrality and Eigenvector centrality) and proximity indicated the distinct rank with the frequency. Meanwhile, as for the result of CONCOR analysis, 4 segmentations were created as "food hygiene group", "person group", "location related group" and "brand group". The diagnosis of this study for the food hygiene in cruise industry through big data is expected to provide instrumental implications both for academia research and empirical application.

Investigating the Impact of Corporate Social Responsibility on Firm's Short- and Long-Term Performance with Online Text Analytics (온라인 텍스트 분석을 통해 추정한 기업의 사회적책임 성과가 기업의 단기적 장기적 성과에 미치는 영향 분석)

  • Lee, Heesung;Jin, Yunseon;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.13-31
    • /
    • 2016
  • Despite expectations of short- or long-term positive effects of corporate social responsibility (CSR) on firm performance, the results of existing research into this relationship are inconsistent partly due to lack of clarity about subordinate CSR concepts. In this study, keywords related to CSR concepts are extracted from atypical sources, such as newspapers, using text mining techniques to examine the relationship between CSR and firm performance. The analysis is based on data from the New York Times, a major news publication, and Google Scholar. We used text analytics to process unstructured data collected from open online documents to explore the effects of CSR on short- and long-term firm performance. The results suggest that the CSR index computed using the proposed text - online media - analytics predicts long-term performance very well compared to short-term performance in the absence of any internal firm reports or CSR institute reports. Our study demonstrates the text analytics are useful for evaluating CSR performance with respect to convenience and cost effectiveness.

A Study on User Behavior of University Library Website based Big Data: Focusing on the Library of C University (빅데이터 기반 대학도서관 웹사이트 이용행태에 관한 연구: C대학교 도서관을 중심으로)

  • Lee, Sun Woo;Chang, Woo Kwon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.3
    • /
    • pp.149-174
    • /
    • 2019
  • This study analyzes the actual use data of the websites of university libraries, analyzes the users' usage behavior, and proposes improvement measures for the websites. The study analyzed users' traffic and analyzed their usage behavior from January 2018 to December 2018 on the C University website. The website's analysis tool used 'Google Analytics'. The web traffic variables were analyzed in five categories: user general characteristics, user environment analysis, visit analysis, inflow analysis, site analysis, and site analysis based on the metrics of sessions, users, page views, pages per session, average session time, and bounce rate. As a result, 1) In the analysis results of general characteristics of users, there was some access to the website not only in Korea but also in China. 2) In the user experience analysis, the main browser type appeared as Internet Explorer. The next place was Chrome, with a bounce rate of Safari, third and fourth, double that of the Explore or Chrome. In terms of screen resolution, 1920x1080 resolution accounted for the largest percentage, with access in a variety of other environments. 3) Direct inflow was the highest in the inflow media analysis. 4) The site analysis showed the most page views out of 4,534,084 pages, followed by the main page, followed by the lending/extension/history/booking page, the academic DB page, and the collection page.

A Study on the Usage Behavior of Public Library Website through an Analysis of Web Traffic (웹 트래픽 분석을 통한 공공도서관 웹사이트 이용행태에 관한 연구)

  • Kang, Munsil;Kim, Seonghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.4
    • /
    • pp.189-212
    • /
    • 2021
  • The purpose of this study is to analyze an usage behavior for the public library website through web traffic. For this purpose, using Google Analytics and growth hacking technique, the data of A public library website log was analyzed for three months from August 1, 2021 to October 31, 2021. As a result of the study, the young age group of 18-24 years old and 25-34 years old recorded a high rate of new member registration, & it was found that the inflow rate through SNS was high for external inflows. As a result of analysis for the access rate by time, it was found that the time with the highest inflow rate was between 10 am and 11 am both on Wednesday and Friday. As a access channel, the access rate using mobile (64.90%) was quite high, but at the same time, the bounce rate (27.20%) was higher than the average (24.93%), & the rate of duration time (4 minutes 33 seconds) was lower than thee average (5 minutes 22 seconds). Finally, it was found that the utilization rate of reading program events and online book curation service, which the library focuses on producing and promoting, is very low. These research results can be used as basic data for future improvement of public library websites.