• 제목/요약/키워드: good compressive strength

검색결과 544건 처리시간 0.026초

각종 비파괴 검사법에 의한 압축강도 상관연구 (A Study on The Compressive Strength Correlation by Various Nondestructive Test Method)

  • 최원호;신도철;이대우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.767-772
    • /
    • 1998
  • schumidt hammer and ultra-sonic method are commonly used for concrete compressive strength test in a construction field. At present, various kinds of equations for estimation of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between estimation strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for this construction site. In this study, a strength test was carried out destructive test by means of core sampling. Non destructive test was conducted Schumidt hammer and ultra-sonic method, the experimental parameter were concrete age, test method and strength level. It is demonstrated that the correlation behavior of concrete strength in this study good due to the performs analysis of correlation between core strength and nondestructive strength.

  • PDF

Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC

  • Nuaklong, Peem;Chittanurak, Jithaporn;Jongvivatsakul, Pitcha;Pansuk, Withit;Lenwari, Akhrawat;Likitlersuang, Suched
    • Advances in concrete construction
    • /
    • 제10권1호
    • /
    • pp.1-11
    • /
    • 2020
  • This study intends to produce an ultra-high performance fibre reinforced concrete (UHPFRC) made with hybrid fibres (i.e., steel and polypropylene). Compressive and tensile strength characteristics of the hybrid fibres UHPFRC are considered. A total of 14 fibre-reinforced composites (FRCs) with different fibre contents or types of fibres were prepared and tested in order to determine a suitable hybrid fibre combination. The compressive and tensile strengths of each concrete at 7 days were determined. The results showed that a hybrid mix of micro-polypropylene and steel fibres exhibited good compromising performances and is the ideal reinforcement mixture in a strong, cost-effective UHPFRC. In addition, maximum compressive strength of 167 MPa was achieved for UHPFRC using 1.5% steel fibres blended with 0.5% macro-polypropylene fibres.

A correlation between moisture and compressive strength of a damaged 15-year-old rammed soil house

  • Preciado, Adolfo;Santos, Juan Carlos;Ramirez-Gaytan, Alejandro;Ayala, Karla;Garcia, Jose de Jesus
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.227-244
    • /
    • 2020
  • Earthen structures have an excellent bioclimatic performance, but they are vulnerable against earthquakes. In order to investigate the edification process and costs, a full-scale rammed soil house was constructed in 2004. In 2016-2019, it was studied its seismic damage, durability and degradation process. During 2004-2016, the house presented a relatively good seismic performance (Mw=5.6-6.4). The damaged cover contributed in the fast deterioration of walls. In 2018 it was observed a partial collapse of one wall due to recent seismicity (Mw=5.6-6.1). The 15-year-old samples presented a reduced compressive strength (0.040 MPa) and a minimum moisture (1.38%). It is estimated that the existing house has approximately a remaining 20% of compressive strength with a degradation of about 5.4% (0.0109 MPa) per year (considering a time frame of 15 years) if compared to the new soil samples (0.2028 MPa, 3.52% of moisture). This correlation between moisture and compressive strength degradation was compared with the study of new soil samples at the same construction site and compared against the extracted samples from the 15-year-old house. At 7-14-days, the specimens presented a similar compressive strength as the degraded ones, but different moisture. Conversely, the 60-days specimens shown almost five times more strength as the existing samples for a similar moisture. It was observed in new rammed soil that the lower the water content, the higher the compressive/shear strength.

순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성 (Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios)

  • 심종성;박철우;박성재;김용재
    • 대한토목학회논문집
    • /
    • 제26권1A호
    • /
    • pp.213-218
    • /
    • 2006
  • 본 논문에서는 최근 고도처리로 생산되는 순환골재의 품질을 분석하고, 이를 구조용 콘크리트에 적용하였을 경우 구조물의 설계 및 해석에서 가장 기초적으로 요구되는 물성인 압축강도와 탄성계수의 변화를 순환굵은골재 및 순환잔골재의 치환율에 따라 검토하고자 하였다. 실험결과 순환굵은골재 및 순환잔골재는 KS F 2573의 1종의 기준을 만족하였으며, 순환골재의 치환율이 증가할수록 순환골재콘크리트의 압축강도 및 탄성계수는 감소하는 경향이 나타났다. 특히 순환골재로 전량치환 하였을 경우의 압축강도와 탄성계수는 일반골재콘크리트 대비 약 13%와 약 31%가 저하되었다. 이러한 실험결과를 기초로 순환 골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 추정식을 새로이 제안하였으며, 기존의 국내외 실험결과와 비교하여 그 타당성을 검토하였다.

Experimental investigation of steel fiber effects on anti-penetration performance of self-compacting concrete

  • Jian Ma;Liang Bian;Jie Zhang;Kai Zhao;Huayan Yao;Yongliang Zhang
    • Advances in concrete construction
    • /
    • 제16권2호
    • /
    • pp.119-126
    • /
    • 2023
  • Steel fiber reinforced self-compacting concrete (SFRSCC) has good workability such as high flowability and good cohesiveness. The workability, compressive strength, splitting tensile strength, and anti-penetration characteristics of three kinds of SFRSCC were investigated in this paper. The fraction of steel fibers of the SFRSCC is 0.5%, 1.5% and 2.0% respectively. The results of the static tests show that the splitting tensile strength increases with the increase of fraction of steel fibers, while the compressive strength of 1.5% SFRSCC is lowest. It is demonstrated that the anti-penetration ability of 1.5% SFRSCC subjected to a velocity projectile (200-500 m/s) is better than 0.5% and 2.0% SFRSCC according to the experimental results. Considering the steel fiber effects, the existing formula is revised to predict penetration depth, and it is revealed that the revised predicted depth of penetration is in good agreement with the experimental results. The conclusion of this paper is helpful to the experimental investigations and engineering application.

장거리 운반 고강도 콘크리트 제조 및 품질관리 (Production and Quality Control of Long Distance Delivered High Strength Concrete)

  • 박연동;정재동;박기청;노재호;조일호;방희상;국중욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.8-13
    • /
    • 1995
  • High strength ready-miced concrete with delivering time of about 90 minutes is successfully produced at ready-mixed concrete plant and placed columns and retaining walls of a tall building without any problems. The design strength of the concrete is 450 kgf/$\textrm{cm}^2$ and the required average compressive strength is 540 kgf/$\textrm{cm}^2$ according to ACI 363R-84 report with assumed coefficient of variation of 12% For the producing of good quality concrete, many laboratary and field tests are carried out. As the results of this study, the slump loss of high strength concrete is largely influenced by kinds of superplasticizer. The measured pump pressure of high strength concrete with slump of 22cm is higher than that of normal strength concrete with slump of 18cm by about 20~30% The measured average 28-day compressive strength of the concrete is 551 kgf/$\textrm{cm}^2$ and the coefficient of variation is 2.3%

  • PDF

시멘트슬러지를 재활용한 시멘트 혼합용 방수제의 모르타르 방수특성 (Properties of Mortar Admixed with Waterproofer Recycled Cement-Sludge)

  • 노재성;조헌영;이기준;이재환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.37-43
    • /
    • 1992
  • Properties of the mortar and the remitar admixed with waterproofer(CS) which was made from cement-sludge were compared with those of the other waterproofers (DA, DD and DH). 1. The CS waterproofer appeared to have a good waterproofness(compressive strength-79%, water absorption ratio-60%, waterpermeability ratio-70%)in cement mortar. 2. The CS waterproofer appeared to have an excellent watertightness(compressive strength-125% water absorption ratio-45%, water permeability ratio-60%) in remitar.

  • PDF

고온조건하에서 플라이애시를 사용한 콘크리트의 압축강도증진 해석 (Estimation of Compressive Strength of Fly Ash Concrete subjected to High Temperature)

  • 한민철
    • 한국건축시공학회지
    • /
    • 제6권3호
    • /
    • pp.99-105
    • /
    • 2006
  • In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

고온환경 조건하에서 고로슬래그를 사용한 콘크리트의 압축강도 증진 해석 (Estimation of Compressive Strength of Concrete Using Blast Furnace Slag Subjected to High Temperature Environment)

  • 한민철;신병철
    • 한국환경과학회지
    • /
    • 제16권3호
    • /
    • pp.347-355
    • /
    • 2007
  • In this paper, estimation of the compressive strength of the concrete incorporating blast furnace slag subjected to high temperature was discussed. Ordinary Portland cement and blast furnace slag cement (BSC;30% of blast furnace slag) were used, respectively. Water to binder ratio ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also chosen for the experimental parameters, respectively. At the high temperature, BSC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated latent hydration reaction subjected to high temperature. For the strength estimation, the Logistic model based on maturity equation and the Carino model based on equivalent age were applied to verify the availability of estimation model. It was found that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

Theoretical Study of Various Unit Models for Biomedical Application

  • Choi, Jeongho
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.387-394
    • /
    • 2019
  • This paper presents an analytical study on the strength and stiffness of various types of truss structures. The applied models are triangular-like opened truss-wall triangular model (OTT), closed truss-wall triangular model (CTT), opened solid-wall triangular model (OST), and hypercube models defined as core-filled or core-spaced cube. The models are analyzed by numerical model analysis using DEFORM 2D/3D tool with AISI 304 stainless steel. Then, the ideal solutions for stiffness and strength are defined. Finally, the relative elastic modulus of the core-spaced model is obtained as 0.0009, which is correlated with the cancellous bone for the relative density range of 0.029-0.03, and the relative elastic modulus for the core-filled model is obtained as 0.0015, which is correlated with cancellous bone for the relative density range of 0.035-0.036. For the relative compressive yield strength, the OTT reasonably agrees with the cancellous bone for the relative density of 0.042 and the relative compressive strength of 0.05. The CTT and OST are in good agreement at the relative density of 0.013 and the relative compressive yield strength of 0.002. The hypercube models can be used for the cancellous bone for stiffness, and the triangular models can be used for the cancellous bone for strength. However, none of the models can be used to replace the compact bone because it requires much higher stiffness and strength. In the near future, compact bone replacement must be further studied. In addition, previously mentioned models should be developed further.