• Title/Summary/Keyword: golf driver

Search Result 52, Processing Time 0.019 seconds

A Method for Analyzing and Evaluating the Golf Swing Using the Force Platform Data (지면반력분석기를 이용한 골프 스윙의 분석 평가 방법)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2010
  • The purpose of this study is developing a method to analyze and evaluate a golf swing motion using the ground reaction force (GRF) data. Proper weight shifting is essential for a successful shot in golf swing and this could be evaluated by means of the forces between the feet and ground. GRF during the swing were measured from 15 low-handicapped male golfers including professionals. Four clubs(driver, iron 3, iron 5, and iron 7) were selected to analyze the differences due to different characteristics of club. Swings of each subject were taken using a high speed video camera and GRF data were taken simultaneously by two AMTI force platforms. To simplify the GRF data, forces of the three major component of GRF(vertical, lateral, anterior-posterior force) at 10 predefined temporal events for each trial were selected and the mean of each event were calculated and evaluated. Analyzed vertical GRF (VGRF) data could be divided into two different styles, one-legged and two legged. One-legged style shows good weight transfer to the target leg and most of the previous study shows this style as a typical pattern of good players. Therefore the data from the iron 5 swing obtained from 10 one-legged style golfers are provided as criteria for the evaluation of a swing.

Kinetic Analysis of the Lower Body Joints on Golf Swing (골프 스윙시 하지의 운동역학적 분석)

  • Chang, Jae-Kwan;Ryu, Jae-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2014
  • The purpose of this study was to investigate joint torques of lower body segments on professional golfers. Three dimensional swing analysis was conducted on the seven subjects. Each subject was asked to swing with 45 inches of Callaway driver, where two force plates (9286AA, Kistler, Switzerland) were built, with his normal speed and tempo. The resultant joint moments of the lower extremities were computed using the kinematic variables of the segments, anthropometric measures and the ground reaction force data by inverse dynamics method. Based on the results of this study, the following conclusions were drawn; It was found that the left ankle joint torque at 3rd phase was increased toward extension on the X-axis and abduction on the Y-axis. The left knee joint torque was alternated from flexion to extension direction in order to lower down the body weight at the beginning of the downswing. The lumbar joint torque was alternated from flexion to extension in order to speed up the upper body rotation which could increase the club head speed ultimately.

Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system (족저압력분포 측정장비를 이용한 골프 스윙시 족저압 분석)

  • Lee, Dong-Ki;Lee, Joong-Sook;Lee, Bom-Jin;Lee, Hun-Sik;Kim, Young-Jae;Park, Seung-Bum;Joo, Jong-Peel
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2005
  • D. K. LEE, J. S. LEE, B. J. LEE, H. S. LEE, Y. J. KIM, S. B. PARK, J. P. JOO. Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 75-89, 2005. In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Address acting, forces concentrated in rare foot regions and lateral foot of right foot. Back swing top acting, relatively high force occurred in medial forefoot region of left foot and forefoot region of right foot. Impact acting, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the lateral region and rarefoot region of left foot. 2. Forces were increased in address of right foot with clubs length increased. All clubs, back swing top acting, high force value observed in the lateral forefoot region of right foot. All clubs, in impact, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the rarefoot region in driver and lateral foot region in iron on left foot. 3. Right foot forces distribution were increased in address, back swing top and left foot force distribution were increased in impact, finnish

The Contribution of Body Segments to the Club Head's Kinetic Energy in the Golf Swing (골프 스윙 시 클럽 헤드의 운동에너지에 대한 신체 분절의 기여도)

  • Chang, Jae-Kwan;Ryu, Ji-Seon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.317-325
    • /
    • 2011
  • The purpose of this study was to investigate the contributions of body joints to the kinetic energy of the clubhead in the golf swing. Three dimensional swing analysis was conducted on the seven KPGA golfers. The subjects were asked to swing with 45 inches of driver. The work done by body joints were computed by utilizing the inverse dynamics method. The order of work done by the body joints was lumbar > left hip > right shoulder > left wrist > right wrist > right hip at the first phase. At the second phase, the order of work done by the body joints was trunk > left elbow > right wrist > right shoulder > left wrist > right wrist. At the third phase, the order of work done by body joints was lumbar > right shoulder > left shoulder > left elbow > right wrist > right elbow. The sum of the work done by the body joints was lumbar > shoulder > wrist on the average. The kinetic energy of the club head was 430.11${\pm}$24.35 J and the subject's swing efficiency was shown as 31.82${\pm}$4.86% on the average. The contributions of body joints to the kinetic energy of the clubhead was the order of lumbar > upper right shoulder > left elbow > right wrist during the down swing.

비거리 향상을 위한 드라이버 헤드의 공기역학적 형상연구

  • Kim, Tae-U;Lee, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.598-603
    • /
    • 2016
  • 현대의 스포츠는 과학기술의 발전과 함께 성장하고 있고 골프종목 역시 재료역학적, 공기역학적 발전에 따라 비거리를 점점 늘려가고 있다. 하지만 현재까지의 비거리에 대한 연구는 골프공과 골프채의 재료의 변화와 딤플이 있는 골프공의 공기역학적 연구에 집중해 있었고 요즘에 들어서야 클럽헤드의 공기역학적 형상에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 골프 경기 중 가장 먼 비거리를 만들어 내는 골프채인 드라이버의 단순화된 2차원 클럽헤드 형상을 설정하고 항력을 줄일 여러 가지 방법을 적용하여 최소의 항력을 갖는 헤드 형상을 찾아보았다. 연구결과 $10.2^{\circ}$의 로프트를 갖는 클럽헤드는 chord 길이가 face 높이의 3.2배이고, trailing edge가 face의 중심보다 전체 face높이의 10% 아래에 있을 때 가장 적은 항력을 얻을 수 있었다. 결과적으로 이 형상과 기존형상의 스윙 속도 차는 약 2mph로 5yard의 비거리 차이를 가져온다.

  • PDF

Kinematic Analysis According to the Intentional Curve Ball at Golf Driver Swing (골프 드라이버 스윙 시 의도적인 구질 변화에 따른 운동학적 분석)

  • Hong, Soo-Young;So, Jae-Moo;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • The purpose of This study's aim is to examine the difference in the changes of body segment movement, variables for ball quality, and carry at golf driver swing according to the ball quality using comparative analysis. Regarding the impact variables according to the ball quality using the track man and carry, club speed was the fastest at draw shot, ball speed was the fastest at straight shot, and smash factor was the lowest at draw shot. About the vertical launch angle, the fade shot showed the highest launch angle while the max height of the ground and ball was the highest at fade shot. And carry was the longest at draw shot. For the flight time, it was the longest at draw shot. The landing angle was the largest at fade shot. About the club head position change and trajectory, at the overall event point, the fade shot drew a more outer trajectory at the point of the follow through(E6) than the straight or draw shot. Regarding the angular speed of shoulder rotation, at the overall event point, the fade shot showed the greatest angular speed change in the follow through(E6). Also, about the angular speed of pelvic rotation, at the overall event point, the draw shot showed the greatest angular speed change at the point of down swing(E4). Concerning the stance angle change, both straight and fade shots were open as the concept of open stance whereas the draw shot was close as that of close stance. Regarding the previous study, the most important factor of deciding Ball Quality is the club face angle's open and close state at Impact. In short, the Ball Quality and carry were decided by this factor.

A Calculation of Joint Torque for Triple Segmental System in Golf Swing (골프스윙 3분절 시스템의 Joint Torque의 산출)

  • Lim, Jung;Hwang, In-Seong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.105-113
    • /
    • 2006
  • The purpose of this study was to analyze the joint torque of triple segmental system in golf driver swing. For this purpose, joint torque were calculated. In order to determine the load on the lumbar region, a triple segmental system was set for wrist, left shoulder and lumbar, torque working on the lumbar region were estimated. For this study, a total of 7 professional golfers were sampled, and then, their driver swings were recorded with two high-speed digital video cameras (180 frames/sec.) to be synthesized into 3-dimensional images and coordinated. Then, Eular's equation was used to produce some kinematic data, which were used to calculate joint torque with Newton's function. All data were calculated using LabVIEW 6.1 graphic program. The results of this study can be summarized as follows; It was found that the joint torque was generated in the direction opposite the target on wrist and shoulder during down swing, while in the direction towards the target on the lumbar region. During impact and release, the torque on the wrist joint was converted from the direction opposite the target to the direction towards the target, while the torque on the lumbar region was generated vice versa. The joints on the club-arm-shoulder were generated in the opposite direction at the beginning of down swing when the torque on the thorax-pelvis began to be generated, and then, the torque on the thorax-pelvis began to lower, while that on the club-arm-shoulder began to increase. Thus, a rapid decrease of the torque on the lumbar region linked to the low trunk acted to increase moment and joint torque on the arm-club region.

A Kinematic analysis of Golf Swing Motion (골프 스윙동작의 운동학적 분석)

  • Shin, Sung-Hyu;Ko, Seok-Kon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.101-114
    • /
    • 2003
  • The purpose of this study was to examine the major kinematicak variance to Increase the club head velocity during the driver swing two PGA prp-golfers utilizing 3-dimensional Image analyzing linear velocity of the club-head during the impact quantiatively. To achive these purpose, two high speed camera in 120 field/s and one high-speed camera in 500 field/s were used in this study. The program made by Younghoo Kwon(1944) was used to analysis the digitalization of reference point, digitalization of joint venter, synchronization, calculation of 3-Dimensional coordinate by DLT method, and smoothing. Through this study, the conclusions are as follow. 1. During the drivel swing, in the percentile of the total time, two pro-golfer showed 0.925, 0.929 second from adress to top-swing, 0.236, 0.929 second from top-swing to impact. 2. During the driver swing, in the displacement of the center of the body, two pro-golfer showed 45.3, 45.23% from adress, 44.3, 44.24% front impact. 3. In the velocity variance, The maximum club-head velocity two pro-golfer showed 43.36, 43.24m/s respectively the down swing. The ball velocity showed 63.12, 63.06m/s. 4. In the rotational angle of the shoulder joint. two pro-golfer showed $-13.5,-13.53^{\circ}$, during the back swing respectively. Two subject adressed opening status og upper body. 5. In the rotational angle of the right knee angle showed $156.3,154.7^{\circ}$ from the adress.

Effect of Balance before and after Impact on the Velocity and Angle of Golf Club during Driver Swing (골프 드라이버 스윙 시 임팩트 전·후 신체 균형성이 클럽헤드의 속도와 각도에 미치는 영향)

  • Ryu, Ji-Seon;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.411-420
    • /
    • 2011
  • The purpose of this investigation was to determine whether correlations exist between balance and impact velocity, angular position, and maximum velocity of a club during drive swing. Twelve skilled golfers were recruited in this study. They were asked to perform ten swing trials and two trials were selected for analysis. Balance parameters were calculated via the force platform while kinematic variables were determined by using the Qualisys system. The results of the present study demonstrated that the average of COP velocity was faster in the medio-lateral direction rather than the anterio-posterior direction. Also, left foot's COP velocity and free torque were greater than the right foot's before impact. The range of the right foot's COP in the anterio-posterior direction before impact were correlated with the club velocity and angular position at impact. There was a negative correlation between the left foot's COP velocity before the impact and the velocity at impact. Additionally, the range and RMS of the left foot's free torque affected on the club angular position at impact and the maximum velocity at release, respectively. Finally, a negative correlation existed between the range of the right foot's free torque after the impact and club's maximum velocity at release.

Consideration of guide sensor for Autonomous Electric Cart (자율전동카트 가이드 센서 고찰)

  • Jae Geun Lee;Sung Gi Kwon;Gye Choon Park
    • Journal of Drive and Control
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2024
  • Electric cart, one of the many devices created to aid golfers, combines software and wireless technology with over 200 different parts and computers. It is designed to be controlled remotely and can be started or stopped using a remote control while on the golf course. However, one recurring issue is the frequent derailment of the electric cart during operation. This problem not only hampers game performance but also causes delays as drivers lose focus. The objective of this study is to enhance the driving system of autonomous electric carts, which are controlled by the driver's signals, in order to address the issue of derailments. These autonomous carts follow a line tracer on the course. By examining the evolution of golf carts and the safety enhancements implemented in current models, we propose to supplement the autonomous driving system to increase safety and improve the performance of these electric carts.