• 제목/요약/키워드: gold mineralization

검색결과 125건 처리시간 0.02초

의성지역(義城地域)의 금(金)-은(銀) 광화작용(鑛化作用) (Gold-Silver Mineralization of the Euiseong Area)

  • 지세정;최선규;도성재;고용권
    • 자원환경지질
    • /
    • 제24권2호
    • /
    • pp.151-165
    • /
    • 1991
  • The Au-Ag deposits of the Euiseong area occurred in quartz veins which filled fissures in Cretaceous sedimentary and volcanic rocks. These ore veins can be classified in two types of deposits based on metallic mineral assemblages as follow: a pyrite type gold-silver deposit (Hoedong mine), characterized by Cu sulfides with Au-Ag alloy, and a Sb-rich silver deposit (Keumdongdo mine), characterized by base metal with Ag-bearing sulfosalts. Mineralogic and fluid inclusion evidences suggest that the ore minerals of these deposits was deposited from initial high temperatures (near $350^{\circ}C$) to later lower temperatures ($200^{\circ}C$) with moderate salinity fluids ranging from 5.8 to 3.8 eq. wt. % NaCl. The gold-silver mineralization of the Hoedong mine occurred at temperatures between 300 and $200^{\circ}C$ from fluids with log $f_{s_2}$ of -10 ~ -16 atm. The antimony - silver mineralization of the Keumdongdo mine were deposited at the higher temperatures (350 to $250^{\circ}C$) and $f_{S_2}$ (-10 ~ -13 atm) than gold mineralization of the Hoedong mine. The calculated log f02 of fluids at $250^{\circ}C$ in two deposits are -32 to -34 atm and -36.5 to -38.5 atm, respectively. Boiling evidences indicate that the ore mineralization of the Hoedong mine occurred at more shallow depth (0.5km) than that (1km) of the Keumdongdo mine. The above differences of depositional environments between two deposits caused the compositional changes of ore minerals such as electrum and sphalerite.

  • PDF

Sulfide MINERALs texture AT THE HUGO DUMMETT PORPHYRY Cu-Au DEPOSIT, OYU TOLGOI, MONGOLIA

  • Myagmarsuren, Sanjaa;Fujimaki, Hirokazu
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 한국정보컨버전스학회 2008년도 International conference on information convergence
    • /
    • pp.99-102
    • /
    • 2008
  • Mineralogical studies of ore and alteration minerals have been conducted for the Hugo Dummett porphyry copper deposit. The Hugo Dummett porphyry copper gold deposit is located in the South Gobi region, Mongolia and currently being explored. This deposit divided into the Cu-rich Hugo Dummett South and the Cu-Au-rich Hugo Dummett North deposits. The Hugo Dummett deposits contain 1.08% copper(1.16 billion tonnes in total) and 0.23 g/t gold(Oyunchimeg et al., 2006). Copper-gold mineralization at these deposit are centered on a high-grade copper(typically>2.5%) and gold(0.5-2 g/t) zone of intense quartz stockwork veining. The high grade copper and gold zone is mainly within the Late Devonian quartz monzodiorite intrusions and augite basalt, also locally occurs in dacitic rocks. Intense quartz veining forms a lens up to 100 m wide hosted by augite basalt and partly by quartz monzodiorite. Although many explorations have been carried out, only a few scientific works were done in the Oyu Tolgoi mining area. Therefore the nature of copper-gold mineralization and orgin of the deposit is not fully understood. Copper-gold mineralization in the Hugo Dummett deposits occurs in dominantly quartz monzodiorite and minor augite basalt, dacitic rocks and locally biotite granodiorite. Chalcopyrite, pyrite, bornite, molybdenite, tennantite, tetrahedrite, enargite, sphalerite, chalcocite, covellite, eugenite, galena and gold occur as main ore minerals in the Hugo Dummett North and South deposits. These sulfides occur as: (1) a vague vein-like trail 1-3cm long and 2-3 mm wide, (2) minute, discontinuous cracks within quartz(micron scales), and (3) irregular blebs/spots(micron scales)and (4) disseminated within the sericite and plagioclase, commonly concentrated in the quartz. Sulfide minerals commonly display as a replacement, intergrown and minor exsolution texture in the both of the Hugo Dummet deposits.

  • PDF

A study on mineralization of Cheonbo gold mine

  • Yoo, Jae shin
    • 동굴
    • /
    • 제34권35호
    • /
    • pp.105-112
    • /
    • 1993
  • The Cheonbo gold mine is located approximately 8km northeast of Cheonan in southern part of Korean peninsula. The Cheonbo gold deposits are composed of parallel-filling quartz veins that are associated with the Cheonan granite which intruded the surrounding Precombrian metamorphic country rocks. Rb/sr date of the granitic intrusion is 170$\pm$0.3m.y., suggesting a middle Jurassic age for gold materialization.

  • PDF

충청북도(忠淸北道) 영동지역(永同地域) 금은광상(金銀鑛床)의 금은광화작용(金銀鑛化作用)에 관한 연구(硏究) (Gold-Silver Mineralization of the Au-Ag Deposits at Yeongdong District, Chung-cheongbuk-Do)

  • 최선규;지세정;박성원
    • 자원환경지질
    • /
    • 제21권4호
    • /
    • pp.367-380
    • /
    • 1988
  • Most of the gold (-silver) vein deposits at Yeongdong District are mainly distributed in the precambrian metamorphic rocks. Based on the Ag/Au total production and ore grade ratios, the chemical composition of electrum and the associated sulfides, the gold(-silver) deposits at Yeongdong District may be classified into 4 classes: pyrrhotite - type gold deposits( I), pyrite - type gold deposits (IT A; massive vein), pyrite - type gold deposits (II B; nonmassive vein) and argentite - type gold - silver deposits(III). The chemical study on electrum(including native gold) revealed that Au content (2.8 to 92.4 atomic%) of electrums varies very widely for different classes of deposits. The Au content of electrum associated with pyrrhotite (Class I), ranging from 47.1 to 92.4 atomic% Au, is clearly higher than that associated with pyrite (Classes IIA, IIB and III). In contrast, classes I, II, and III deposits do not show clear differences in Au content of electrum. In general, pyrrhotite - type gold deposits(I) are characterized by features such as simply massive vein morphology, low values in the Ag/Au total production and ore grade ratios, the absence or rarity of silver - bearing minerals except electrum, and distinctively simple mineralogy. Although the geological and mineralogical features and vein morphology of pyrite - type gold deposits(IIA)are very similar to those of pyrrhotite - type gold deposits (I), Class II A deposits reveal significant differences in the associated iron sulfide (i. e. pyrite) with electrum and Au content of electrum. The Ag/Au total production and ore grade ratios from Class II A deposits are relatively slightly higher than those from Class I deposits. Pyrite - type gold deposits(II B) and argentite - type gold - silver deposits (III) have many common features; complex vein morphology, medium to high values in the Ag/Au total production and ore grade ratios and the associated iron sulfide (i. e. pyrite). In contrast to Class II B deposits, Class III deposits have significantly high Ag/Au total production and ore grade ratios. It indicates distinct difference in the abundance of silver minerals (i. e. native silver and argentite). The fluid inclusion analyses and mineralogical data of electrum tarnish method indicate that the gold mineralization of Classes I and II A deposits was deposited at temperatures between $230^{\circ}$ and $370^{\circ}C$, whereas the gold (-silver) mineralization of Classes ITB and ill formed from the temperature range of $150^{\circ}-290^{\circ}C$. Therefore, Classes I and IT A deposits have been formed at higher temperature condition and/or deeper positions than Classes IIB and III.

  • PDF

강원도 옥계 금광상에 관한 광물학적·지화학적 연구 (Mineralogy and Geochemistry of the Ogkye Gold Deposits, Gangwondo Province)

  • 최선규;최상훈;이현구
    • 자원환경지질
    • /
    • 제30권1호
    • /
    • pp.15-23
    • /
    • 1997
  • Gold mineralization of the Ogkye gold mine was deposited mainly in quartz veins up to 150 cm wide which occupy fissures in Cambrian Pungchon limestone. Ore minerals are relatively simple as follows: pyrite, arsenopyrite, pyrrhotite, sphalerite, electrum and galena. On the basis of the Ag/Au ratio on ore grades, mode of occurrence and assoicated mineral assemblages, the Ogkye gold deposit can be classified as pyrite-type gold deposit (Group IIB). Fluid inclusion data indicate that ore minerals were deposited between $400^{\circ}$and $230^{\circ}C$ from relatively dilute fluids (0.2 to 7.3 wt.% eq. NaCl) containing $CO_2$. The ore mineralization resulted from a complex history of $CO_2$ effervescence and local concomitant boiling coupled with cooling and dilution of ore fluids. Gold deposition was likely a result of decrease of sulfur activity caused by sulfide deposition and/or $H_2S$ loss accompanying fluid unmixing. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=3.5{\sim}5.9$‰) are consistent with ${\delta}^{34}S_{H_2S}$ value of 4.8 to 6.1‰, suggesting mainly an igneous source of sulfur partially mixed with wall-rock sulfur.

  • PDF

Studies on the Ore Mineralogy and Litho-geochemistry of the Sheba Deposit, Barberton Greenstone Belt, South Africa

  • Altigani, Mohammed Alnagashi Hassan
    • 자원환경지질
    • /
    • 제54권2호
    • /
    • pp.213-232
    • /
    • 2021
  • Ore criteria at the Sheba Deposit indicate orogenic mineralization type. Rocks and mineral assemblages suggest low formation-temperature of green-schist facies. Pyrite found in two generations; Type1 is irregular grains, contains higher arsenic and gold contents, compared to the relatively younger phase Type2 pyrite, which is composed of euhedral grains, found adjacent to late quartz-carbonate veins or at rims of type1 pyrite. Two gold generations were identified; type1 found included in sulphides (mainly pyrite). The second gold type was remobilized (secondary) into free-lodes within silicates (mainly quartz). Gold fineness is high, as gold contains up to 95 wt. % Au, Ag up to 3.5 wt. %, and traces of Cu, Ni, and Fe. Pyrite type2 contains tiny mineral domains (rich in Al, Mn, Hg, Se, Ti, V, and Cr). Zoning, and replacement textures are common, suggesting multiple mineralization stages. The distribution and relationships of trace elements in pyrite type2 indicate three formation patterns: (1) Al, Mn, Hg, Se, Ti, V, Cr, and Sn are homogeneously distributed in pyrite, reflecting a synchronous formation. (2) As, Ni, Co, Zn, and Sb display heterogeneous distribution pattern in pyrite, which may indicate post-formation existence due to other activities. (3) Au and Ag show both distribution patterns within pyrite, suggesting that gold is found both in microscopic phases and as chemically bounded phase.

컬러코어스캐너 기법에 의한 금광상 배태 현황 및 성인연구 (A Study of Gold Deposits and Genesis by Using Color-corescanner)

  • 현혜자;황덕환
    • 자원환경지질
    • /
    • 제39권6호
    • /
    • pp.663-674
    • /
    • 2006
  • 금광상에서 암석의 구조, 구조선에 따른 열수의 이동, 천열수 맥 구조, 광화작용상태 및 구성광물등을 정밀하게 분석하는 것은 광상의 배태현황, 천열수에 따른 열수광상의 성인을 확인하는 데 매우 중요하다. 따라서, 본 연구의 목적은 컬러코어스캐너 기법에 의해 구조선에 따른 열수의 이동 및 천열수 맥 구조 등에 대한 정밀한 정보를 통해 금광 배태상황과 성인을 연구하는 데 있다. 컬러코어스캐너 기법은 전남 해남지역 순신 금광산에서 천공된 3개 시추공의 시추코어 전체를 디지털 영상자료(digital image data)화하였다. 디지털 시추코어자료에서는 금이 배태하는 여러 형태의 천열수 맥 구조가 정밀하게 분석되었다. 즉, 빗살구조형, 정동구조형, 엽편상구조형, 각력구조형, 누대구조형 및 혼합구조형 등이다. 또한, 금광상 배태는 대부분 맥상체 형태의 구조들에 많이 배태하나 고품위의 금광은 각력상 형태의 구조내에 많이 배태하고 있음이 특징적이다. 금광상의 성인은 전형적인 천열수 금광상이다. 컬러코어스캐너 기법에 의한 디지털 시추코어 영상자료는 육안관찰에서 빠뜨린 부분을 다시 볼 수 있고, 반복해서 관찰 할 수 있기 때문에 암석내에 발달하는 구조상태 및 광상의 배태 현황 및 광상의 성인을 규명하는데 매우 유익하다고 판단된다.

충청도(忠淸道) 일원(一圓)의 금(金)·은(銀)광상(鑛床)에 대한 광물학적(鑛物學的) 연구(硏究) (Mineralogy of gold-silver deposits in Chungcheong Province)

  • 최선규;박노영;홍세선
    • 자원환경지질
    • /
    • 제21권3호
    • /
    • pp.223-234
    • /
    • 1988
  • A large number of gold and/or silver-bearing quartz veins occur in or near Mesozoic granite batholith elongated in a NE-SW direction within the Chungcheong Province. Precambrian schists and gneisses, and Jurassic and Cretaceous granitic rocks serve as hosts for gold and/or silver deposits. On the basis of Ag/Au total production and ore grade ratio, 15 mines may be divided into three major groups: gold-dominant deposits, gold-silver deposits, and silver-dominant deposits. The chemical composition of electrum from skarn deposit (Geodo mine), alaskite-type deposit (Geumjeong mine) and 15 vein deposits was summarized. It was found that the Au content of electrum for vein deposits ranging from 5.2 to 86.5 is lower than that for skarn and alaskite deposits. Among 15 vein deposits, the composition of electrum associated with pyrrhotite is relatively high and has a narrow range of 40.8 to 86.5 atomic % Au, but the Au content of electrum with pyrite is in range of 5.2 to 82.8 atomic %, and is clearly lower than that with pyrrhotite. The grouping of ages for these mines indicates that gold and/or silver mineralizations occurred during two periods in the Mesozoic. Daebo igneous activities are restricted to gold mineralization in the range of 158 to 133 Ma, whereas Bulgugsa igneous activities are related to gold and/or silver mineralization ranging from 108 to 71 Ma. Generally speaking, Jurassic gold-dominant veins have many common characteristics; notably prominent association with pegmatites, simply massive vein morphology, high fineness in the ore concentrates, rarity of silver minerals, and a distinctively simple mineralogy, including sphalerite, galena, chalcopyrite, pyrrhotite and/or pyrite. Although individual deposits exhibit widely differing diversity, Cretaceous gold-silver and silver-dominant veins are characterized by features such as complex vein, low to medium fineness in the ore concentrates and abundance of silver minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver.

  • PDF

영덕 유금 열수 금광상에 대한 유체포유물과 안정동위원소 연구 (Fluid Inclusion and Stable Isotope Geochemistry of the Yugeum Hydrothermal Gold Deposit in Youngduk, Korea)

  • 김상우;이인성;신동복
    • 한국광물학회지
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2010
  • 경북 영덕의 유금광상은 경상분지 북동부 백악기 화강암체 내에 배태되어 있으며, 함금 열수석영맥은 모암인 영해 화강섬록암 내에 $N19^{\circ}{\sim}38^{\circ}W$ 주향의 단층대를 따라 충진되었다. 열수 유체의 유입은 크게 세 시기로 나누어 볼 수 있는데, 첫 번째 시기는 광화되지 않은 소량의 석영맥이 생성되었고, 두 번째 시기에는 다량의 금속원소와 이에 수반된 금을 함유한 유체가 유입되었으며, 세 번째 시기에는 다량의 황화광물이 침전되었다. 금 광화작용을 수반한 열수 유체는 황철석, 황동석, 방연석, 섬아연석, 그리고 유비철석 등의 다양한 황화광물들을 침전시켰으며, 에렉트럼 내 Au의 함량은 최대 92 wt%까지 매우 높은 편이다. 초기 금 광화작용 시기의 유체의 온도와 압력은 각각 $220{\sim}250^{\circ}C$와 730~1800 bar의 범위를 보이며, 이때 산소분압은 $10^{-27}{\sim}10^{-31.7}$ atm에 이른다. 반면, 광화 후기에서의 유체의 온도와 압력은 각각 $250{\sim}350^{\circ}C$와 206~472 bar의 범위를 보이며, 산소분압은 $10^{-26.3}{\sim}10^{-28.6}$ atm에 해당하고, 황화광물과 $H_2S$${\delta}^{34}S$ 값은 각각 $0.2{\sim}4.2^{\circ}/_{\circ\circ}$의 범위와 $1.0{\sim}3.7^{\circ}/_{\circ\circ}$범위를 보여준다. 유금광상에서 산출되는 에렉트럼은 0.15~1.10 범위의 Ag/Au 원자비를 보인다. 주광화작용이 진행되는 동안 비교적 높은 온도 조건과 4.5~5.5 의 pH 범위에서 광화유체 내에서 ${Au(HS)_2}^-$의 안정성을 감소되고, 상대적으로 ${AuCl_2}^-$ 의 안정성은 증가되었다. 압력조건을 고려 할 때 광화유체는 $350^{\circ}C$ 이상의 온도에 이르렀으며 용액 중 ${AuCl_2}^-$가 중요한 운반 수단이었을 것으로 생각된다. 광화작용이 진행되면서, 온도와 log $f_{o2}$의 감소가 일어남에 따라 ${AuCl_2}^-$의 용해도는 낮아지고 황화물들의 침전이 일어나며 이와 함께 에렉트럼도 침전하였을 것으로 생각된다.