• Title/Summary/Keyword: gold and silver ore

Search Result 91, Processing Time 0.022 seconds

Gold and Silver Mineralization of the Soowang Ore Deposits in Muju, Korea (무주 수왕광상의 금-은 광화작용)

  • Park, Hee-In;Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.484-494
    • /
    • 2004
  • The Soowang Au-Ag deposits occur as quartz veins which filled fissures in middle Cretaceous porphyritic granite an/or gneiss of the Precambrian Sobaegsan gneiss complex. The paragenetic studies suggest that vein filling can be divided into four identifiable stages (I to IV). Stage I is the main sulfide stage, characterized by the deposition of base-metal sulfide and minor electrum. Stage II is the electrum stage, whereas stage III represents a period of the deposition of silver-bearing sulfosalts and minor electrum. Stage IV is the post ore stage. Mineralogical and fluid inclusion evidences suggest that mineralization of the Soowang deposits were deposited by the cooling of the fluids from initial high temperatures 300$^{\circ}C$ to later low temperatures 150$^{\circ}C$. The salinity of the fluids were moderate, ranging from 10.4wt.% equivalent NaCl in sphalerite to 3.1wt.% equivalent NaCl in barite. The gold-silver mineralization of the Soowang mine occurred at temperatures between 140 and 250$^{\circ}C$ from fluids with log $fs_2$ from -12 to -18 atm. A consideration of the pressure regime during ore deposition, based on the fluid inclusion evidence of boiling, suggests lithostatic pressure of less than 210 bars. This pressure condition indicates that vein system of the Soowang deposit formed at depth around 800 m below the surface at the time of gold-silver mineralization.

Hydrothermal Au-Ag Mineralization of the Oknam Mine in the Northern Sobaegsan Massif (북부 소백산 육괴 지역에 부존하는 옥남 광산의 열수 금-은 광화작용)

  • Yun, Seong-Taek;Chi, Se-Jung;So, Chil-Sup;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.389-398
    • /
    • 1998
  • The Au-Ag deposit of the Oknam mine occurs as gold-silver-bearing rhodochrosite veins in biotite schist and phyllite of the Precambriam Yulri Group. Five stages of ore deposition are recognized, each showing a definite mineral assemblage. General mineral parageneses in veins (stage III) associated with gold and silver vary inwardly from the vein margin: arsenopyrite + pyrite $\Rightarrow$ sphalerite+chalcopyrite+galena+gold $\Rightarrow$ ga1ena+Ag-bearing minerals. Fluid inclusion data indicate that temperature and salinity of ore fluids overally decreased with time: $345^{\circ}{\sim}240^{\circ}C$ and 3.4~7.8 wt. % NaCl equiv during stage I (quartz vein mineralization), $313^{\circ}{\sim}207^{\circ}C$ and 2.3~8.7 wt.% NaCl equiv during manganese-bearing carbonate stages (II and III), and $328^{\circ}{\sim}213^{\circ}C$ and 3.6-5.4 wt.% NaCl equiv during stage IV (quartz vein mineralization). The ore fluids probably evolved through repeated pulses of boiling and later mixing with cooler and more dilute meteoric waters. Fluid inclusion data and geologic arguments indicate that pressures during the mineralization were in the range of 90 to 340 bars. Gold occurs as silver-rich electrums (21 to 29 atom. % Au) and was deposited at temperatures between $300^{\circ}$ and $240^{\circ}C$. Thermochemical calculations suggest that gold was deposited as a combined result of increase in pH and decreases in temperature, $fs_2$ and $fo_2$.

  • PDF

Compositional Variations of Sphalerites and Their Genetic Characteristics from Gold and/or Silver Deposits in Central Korea (한국 중부지역 금은광상산 섬아연석의 조성변화와 성인적 특성)

  • Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.135-143
    • /
    • 1993
  • Chemical compositions of sphalerites from 25 gold and/or silver deposits in central Korea were obtained with an electron probe microanalyzer. The FeS contents of sphalerites depend generally upon the assemblage of associated iron sulphides (pyrite and/or pyrrhotite) especially. The sphalerites coexisting with pyrrhotite show a narrow range of FeS variation, but the sphalerites associated with pyrite and/or pyrrhotite have the variable and wide range of FeS contents. The sphalerites from Au-dominant deposits, which vary considerably in each deposit, are generally characterized by high CdS content and low MnS content. On the contrary, the sphalerites from Ag-dominant and Au-Ag deposits tend to be characterized by relatively high MnS and very low CdS content. Based upon the mineralogy, fluid inclusions and stable isotope data, the Au-dominant deposits were formed under higher temperature and deeper depth than the Ag-dominant and Au-Ag deposits. The results suggest the possibility that the diverse sources and evolution of ore fluid at the time of ore deposition are responsible for the deposition of Cd and Mn components in sphalerites.

  • PDF

Exploration and Development of the Muguk Au Mine (무극광산(無極鑛山)의 탐사(探査)와 개발현황(開發現況))

  • Shin, Yang-Woo;Suh, Kyu-Sik
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.261-271
    • /
    • 1987
  • Muguk gold deposits are composed of quartz veins emplaced along faults in Mesozoic granodiorite. General strikes and dips of the veins are $N15{\sim}20^{\circ}W$ and $70{\sim}80^{\circ}NE$. Associated ore minerals are pyrite, arsenopyrite, sphalerite, galena, chalcopyrite, pyrrhotite, native silver, argentite, tetrahedrite and electrum. Vein mineral paragenesis is complicated by repeated fracturing, but five distinct depositional stages can be recognized. Electrum grains are associated mainly with sulfide bands formed along both margins of pale pink quartz of stage 3, and with patches of pyrite aggregate of stage 4. Before the close down in 1972, Muguk gold mine yielded more than 8 tons of gold of which major portion was produced from the No.2 vein. No.2 vein, extending about 1,500m laterally, was exploited to a depth of about 750m. In 1984, Young-poong mining company acquired the mining property and began geologic mapping, geochemical and geophysical exploration, diamond drilling and exploration tunnelling around the mine area to seek for other rich gold-bearing quartz veins. As the Samhyungje vein was disclosed to be the most rich vein, exploration works were focussed on the Samhyungje vein. As of August 1987, 22,338m of diamond drilling and 9,652m of exploration tunnelling have been undertaken. Owing to the successful result of exploration, the Muguk mine commenced normal operation on January 1987, treating 5,500 tons of ore per month.

  • PDF

Geology and Ore Deposits of Geoje Dong-A Mine (거제(巨濟) 동아광산(東亞鑛山)의 지질(地質) 및 광상(鑛床))

  • Kim, Jong Dae
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.103-112
    • /
    • 1986
  • The geology of the mine consists of Cretaceous lower andesitic breccia member, tuffaceous black shale, upper tuffaceous sandstone member and andesitic dike. Ore bodies are two parallel veins of breccia originated from hydrothermal activity of later acidic igneous intrusion. First two periods of mineralization, gold and silver, and copper, and later copper enrichment was identified. The first two might have been occurred during boiling of hydrothermal solution that formed breccia and copper enrichment was accomplished by enhancement of $CO_2$ fugacity from the organic material contained in the black shale. With all the geologic and mineralogic data and inferences attained from other investigators it was estimated that the optimum depth of the ore mineralization was between 500m and 300m below the surface of Kyong-Sang series.

  • PDF

Introduction of Major Ore Deposits and mining Projects in Argentina (아르헨티나 주요광상 및 프로젝트 소개)

  • Lee, Han-Yeang
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.921-925
    • /
    • 2009
  • It is introduced briefly to understand the overall state of mineral resources of Argentina profile of 30 major ore deposits and mining projects. Prospecting deposits are mostly concentrated on the Northwestern and Midwestern area in Argentina and this fact implies that deposit formation is strongly related to Andean Orogeny. Argentina is important mineral exporting country for copper, gold, silver, lead, zinc, lithium and boron. For a long-term strategy of fuel energy and mineral supply active cooperation of geological research and mine business between Korea and Argentina is needed.

Au-Ag Minerals and Geneses of Weolyu Gold-Silver Deposits, Chungcheongbukdo, Republic of Korea (월유광산산(月留鑛山産) 금(金)-은(銀)광물(鑛物)과 광상(鑛床)의 생성환경(生成環境))

  • Lee, Hyun Koo;Yoo, Bong-Cheal;Jeong, Kwang Young;Kim, Kee Hyun
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.537-548
    • /
    • 1994
  • The Weolyu gold-silver deposits at Hwanggan, Chungcheongbukdo, is of a late Cretaceous $(74.24{\pm}1.63Ma)$ epithermal vein-type, and is hosted in the quartz porphyry of late Cretaceous age. Based on mineral paragenetic sequence interpreted from vein structure and mineral assemblages, three stages mineralization were distinguished. A variety of ore minerals occurs including pyrite, sphalerite, chalcopyrite, galena with small amount of electrum, native silver, argentite, pearceite, sb-pearceite, argyrotite. The gangue minerals are quartz, rutile, calcite, apatite, fluorite and rhodochrocite. Wall-rock alteration such as pyritization, chloritization, sericitization, silicification is observed near the quartz veins. Au-Ag minerals were crystallized at middle and late stage of the two mineralization sequences. Results from the analysis of fluid inclusion and thermodynamic calculation indicate that Au-Ag mineral deposits were formed primarily by cooling and dilution of hydrothermal fluids($165{\sim}313^{\circ}C$, 0.4~2.4wt.% equivalent NaCl) with some degree mixing of meteoric water.

  • PDF

Genetic Environment of the Samsung Gold-Silver Deposit, Republic of Korea: Ore Minerals, Fluid Inclusion and Stable Isotope Studies (삼성 금-은광상의 생성환경: 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;Lee, Gill-Jae;Koh, Sang-Mo;You, Byoung-Woon
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.443-453
    • /
    • 2010
  • The Samsung gold-silver deposit consists of quartz veins that fill along the fault zone within Cretaceous shale and sandstone. Mineralization is occurred within fault-breccia zones and can be divided into two stages. Stage I is main ore mineralization and stage II is barren. Stage I is associated with wall-rock alteration minerals(sericite, pyrite, chlorite, quartz), rutile, base-metal sulfides(pyrrhotite, pyrite, sphalerite, chalcopyrite, galena), and electrum. Stage II occur quartz, calcite and pyrite. Fluid inclusion data indicate that homogenization temperatures and salinities of stage I range from 145 to $309^{\circ}C$ and from 0.4 to 12.4 wt.% NaCl, respectively. It suggests that hydrothermal fluids were cooled and diluted with the mixing of meteoric water. The main deposition of base-metal sulfides and electrum occurred as a result of cooling and dilution at temperature between $200^{\circ}C$ and $300^{\circ}C$. Sulfur(9.3~10.8‰) isotope composition indicates that ore sulfur was mainly derived from a magmatic source as well as the host rocks. The calculated oxygen[-2.3~0.9‰(quartz: 0.3‰, 0.9‰, calcite: -2.3‰)] and hydrogen[-86~-76‰(quartz: -86‰, -82‰, calcite: -76‰)] isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Gold-Silver Mineralization of the Mujeong Mine, Korea (무정광산의 금-은 광화작용)

  • 김상중
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.237-245
    • /
    • 1999
  • The Mujeong au-Ag hydrothermal vein type deposits occur within the Teriary igneous rocks of the Janggi basin. Ore minerals consist of pyrite, pyrrhotite, sphalertite, chalcopyrite, galena, cosalite, lillianite, argentite and electrum, and associated with epidotization, sericitization and pyritization. Fluid inclusion studies reveal that ore fluids were low saline with a simple NaCl-$H_{2}O$ system. Fluid inclusion data indicate that homogenization temperatures and salinities of fluid are 150 to $340^{\circ}C$ and 1.0 to 6.5wt.% NaCl equivalent, respectively. Sulfur isotope compositions of sulfied minerals ( ${\delta}^{34}S$=6.2 to 9.6$\textperthousand$) indicate that the ${\delta}^{34}S_{H2S}$ value of ore fluids was about 10.4$\textperthousand$. This ${\delta}^{34}S_{H2S}$ value is likely consistent with and hydrothermal sulfur, whereas the fluids were highly influenced by mixing with meteoric water. Measured and calculated oxygen and hydrogen isotope values (${\delta}^{18}O_{H2O}$=-2.7 to 3.4 $\textperthousand$, ${\delta}D_{H2O}$ = -83.6 to -52.7 $\textperthousand$) of ore forming fluids suggest mixing with hydrothermal and meteoric water. Equilibrium thermodynamic interpretation by mineral assemblages and chemistry indicates that sulfur fugacities (-log $fs_2$) ore forming fluids range from 9.0 to 12.6 atm stage II.

  • PDF

Geology and Ore Deposits in the Haman-Kunbuk Copper District (함안군북지구(咸安郡北地區)의 지질(地質)과 동광상(銅鑛床))

  • Moon, Chung Uk;Kim, Myung Whan;Lee, Ji Hern;Choi, Chung Jung
    • Economic and Environmental Geology
    • /
    • v.3 no.2
    • /
    • pp.55-73
    • /
    • 1970
  • The district investigated covers the central and southern portions of the Uiryong Quadrangle amounting to $40km^2$ in area and is bounded approximately by geographical coordinates of $128^{\circ}$ 28' $40^{{\prime}{\prime}}{\sim}128^{\circ}$ 24' 25"E in longitude and $35^{\circ}10{\prime}{\sim}35^{\circ}14^{\prime}06^{{\prime}{\prime}}N$ in latitude. The purpose of this investigation was to provide basic information in drawing up a comprehensive development plan of the copper ore deposits known to exist in the HamanKumbuk district with special emphasis given to the ascertainment of geological and paragenetic characteristics. The area consists chiefly of shale, sandy shale and chert, all belong to Kyongsang System of Cretaceous age. Intruded into these rocks are andesite, granodiorite, basic dikes, and acidic dikes. The mineralization which took place in the area, consists of mostly fissure-filling vein deposits, numbering several tens, with varying magnitudes. The fissures and shear zones created in rocks, such as chert and granodiorite, hosted the deposition of mineralizing vapors and/or hydrothermal solutions along their openings. The strike lengths of these veins vary from 50 to 600 meters in extension and 0.1 to 3 meters in width. Although the degree of fluctuation in width is great, it averages 0.3m. The stuctural patterns, which apparently affected the deposition of veins, are fissure patterns, trend NS to $N30^{\circ}W$, and steep-pitching tension fractures as well as normal fault pattern. Ore minerals associated with vein matters are primarily chalcopyrite and small amounts of scheelite, cobaltiferous arsenopyrite, and gold and silver intimately associated with sulphide minerals. Associated with these ore mineral are pyrite, pyrrhotite, magnetite, specularite and arsenopyrite. Gangue minerals noted are quartz, calcite, chlorite, tourmaline and hornblende. In terms of the compositions of associated minerals, the vein deposits in the district could be grouped under the following four categories: 1. Pyrrhoitite, Arsenopyrite, Gold and Silver Bearing Copper Vein (Type I) 2. Calcite-Scheelite-Copper Vein (Type II) 3. Magnetite-Pyrite-Copper Vein (Type III) 4. Tourmaline Copper Vein (Type IV) Of the four types, the first and the fourth are presently yielding relatively higher grades: of copper ores and concentrates. The estimated ore reserves total some 222,000 metric tons with the following breakdown in terms of metal contents: Name of Mines Au(g/t) Ag(g/t) Cu(%) Reserves(M/T) Kunbuk 15.92 78.69 6,074 60.498 Cheil Kunbuk - - 1.040 60,847 Haman - - 2.688 101,204 222,549 As rehabilitation of old workings and/or exploration of veins at depth proceed, additional estimation of ore reserves may become apparent and necessary. With regard to the problem of beneficiation and upgrading of low-grade ores in the district, it would be advisable to make decisions on location, treating capacity and mill flowsheet after sufficient amount of exploration is completed as suggested in the report.

  • PDF