• Title/Summary/Keyword: goal detection

Search Result 292, Processing Time 0.023 seconds

The Taxonomy Criteria of DoS Attack Pattern for Enhanced Intrusion Detection System (향상된 침입 탐지 시스템을 위한 DoS 공격 유형의 분류 체계)

  • Kim, Kwang-Deuk;Park, Seung-Kyun;Lee, Tae-Hoon;Lee, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3606-3612
    • /
    • 1999
  • System(IDS) hasn't Protection capability for various security attacks perfectly. Because, It is probably affected by IDS's workload caused by treating all kind of the characteristics and attack patterns of system and can't probe all of the attack types being intelligently different with attack patterns. In this paper, we propose a new taxonomy criteria about DoS(denial of service attacks) to make more efficient and new real time probing system. It's started with an idea that most of the goal oriented systems make the state of system operation more unambiguous than general purpose system. A new event caused the state of the system operation to change and classifying a category of the new events may contribute to design the IDS.

  • PDF

Two-Stream Convolutional Neural Network for Video Action Recognition

  • Qiao, Han;Liu, Shuang;Xu, Qingzhen;Liu, Shouqiang;Yang, Wanggan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3668-3684
    • /
    • 2021
  • Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.

The Effects of Socio-demographic Characteristics on Indonesian Women's Knowledge of HIV/AIDS: A Cross-sectional Study

  • Pradnyani, Putu Erma;Wibowo, Arief;Mahmudah, Mahmudah
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.2
    • /
    • pp.109-114
    • /
    • 2019
  • Objectives: The purpose of this study was to characterize Indonesian women's knowledge of HIV/AIDS and to investigate the effects of socio-demographic characteristics thereupon with the goal of supporting the prevention and early detection of HIV/AIDS. Methods: This cross-sectional study was conducted using secondary data from the standard Indonesian Demographic and Health Survey (IDHS) in 2012. A total of 34 984 subjects ranged in age from 15 years to 49 years. Data were analyzed using the chi-square test and logistic regression to identify the effects of socio-demographic characteristics on Indonesian women's knowledge of HIV/AIDS. Results: All socio-demographic characteristics except marital status were related to knowledge of HIV/AIDS among Indonesian women in the univariate analysis (p<0.05). Multivariate analysis revealed that only age group, education level, location of residence, and wealth index were related to Indonesian women's knowledge of HIV/AIDS (p<0.05). Conclusions: Indonesian women's insufficient knowledge related to HIV/AIDS shows that the provision of accurate and comprehensive information related to HIV/AIDS are components of prevention and control interventions that should be improved. With greater knowledge, women are expected to be more likely to determine their own and their partners' human immunodeficiency virus status and to take appropriate preventive steps.

Sepsis: Early Recognition and Optimized Treatment

  • Kim, Hwan Il;Park, Sunghoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.6-14
    • /
    • 2019
  • Sepsis is a life-threatening condition caused by infection and represents a substantial global health burden. Recent epidemiological studies showed that sepsis mortality rates have decreased, but that the incidence has continued to increase. Although a mortality benefit from early-goal directed therapy (EGDT) in patients with severe sepsis or septic shock was reported in 2001, three subsequent multicenter randomized studies showed no benefits of EGDT versus usual care. Nonetheless, the early administration of antibiotics and intravenous fluids is considered crucial for the treatment of sepsis. In 2016, new sepsis definitions (Sepsis-3) were issued, in which organ failure was emphasized and use of the terms "systemic inflammatory response syndrome" and "severe sepsis" was discouraged. However, early detection of sepsis with timely, appropriate interventions increases the likelihood of survival for patients with sepsis. Also, performance improvement programs have been associated with a significant increase in compliance with the sepsis bundles and a reduction in mortality. To improve sepsis management and reduce its burden, in 2017, the World Health Assembly and World Health Organization adopted a resolution that urged governments and healthcare workers to implement appropriate measures to address sepsis. Sepsis should be considered a medical emergency, and increasing the level of awareness of sepsis is essential.

Radiation detector deadtime and pile up: A review of the status of science

  • Usman, Shoaib;Patil, Amol
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1006-1016
    • /
    • 2018
  • Since the early forties, researchers from around the world have been studying the phenomenon of deadtime in radiation detectors. Many have attempted to develop models to represent this phenomenon. Two highly idealized models; paralyzable and non-paralyzable are commonly used by most individuals involved in radiation measurements. Most put little thought about the operating conditions and applicability of these ideal models for their experimental conditions. So far, there is no general agreement on the applicability of any given model for a specific detector under specific operating conditions, let alone a universal model for all detectors and all operating conditions. Further the related problem of pile-up is often confused with the deadtime phenomenon. Much work, is needed to devise a generalized and practical solution to these related problems. Many methods have been developed to measure and compensate for the detector deadtime count loss, and many researchers have addressed deadtime and pulse pile-up. The goal of this article is to summarize the state of science of deadtime; measurement and compensation techniques as proposed by some of the most significant work on these topics and to review the deadtime correction models applicable to present day radiation detection systems.

Photogrammetric Crack Detection Method in Building using Unmanned Aerial Vehicle (사진측량법을 활용한 무인비행체의 건축물 균열도 작성 기법)

  • Jeong, Dong-Min;Lee, Jong-Hoon;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • Recently, with the development of the fourth industrial revolution that has been achieved through the fusion of information and communication technology (ICT), the technologies of AI, IOT, BIG-DATA, it is increasing utilization rate by industry and research and development of application technologies are being actively carried out. Especially, in the case of unmanned aerial vehicles, the construction market is expected to be one of the most commercialized areas in the world for the next decade. However, research on utilization of unmanned aerial vehicles in the construction field in Korea is insufficient. In this study, We have developed a quantitative building inspection method using the unmanned aerial vehicle and presented the protocol for it. The proposed protocol was verified by applying it to existing old buildings, and defect information could be quantified by calculating length, width, and area for each defect. Through this technical research, the final goal is to contribute to the development of safety diagnosis technology using unmanned aerial vehicle and risk assessment technology of buildings in case of disaster such as earthquake.

Concurrency Conflicts Resolution for IoT Using Blockchain Technology

  • Morgan, Amr;Tammam, Ashraf;Wahdan, Abdel-Moneim
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.331-340
    • /
    • 2021
  • The Internet of Things (IoT) is a rapidly growing physical network that depends on objects, vehicles, sensors, and smart devices. IoT has recently become an important research topic as it autonomously acquires, integrates, communicates, and shares data directly across each other. The centralized architecture of IoT makes it complex to concurrently access control them and presents a new set of technological limitations when trying to manage them globally. This paper proposes a new decentralized access control architecture to manage IoT devices using blockchain, that proposes a solution to concurrency management problems and enhances resource locking to reduce the transaction conflict and avoids deadlock problems. In addition, the proposed algorithm improves performance using a fully distributed access control system for IoT based on blockchain technology. Finally, a performance comparison is provided between the proposed solution and the existing access management solutions in IoT. Deadlock detection is evaluated with the latency of requesting in order to examine various configurations of our solution for increasing scalability. The main goal of the proposed solution is concurrency problem avoidance in decentralized access control management for IoT devices.

Advanced Navigation Technology Development Trend as an Unmanned Vehicle Core Technology

  • Seok, Hyo-Jeong;Hwang, In Seong;Kang, Wanggu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.235-242
    • /
    • 2021
  • Unmanned Aerial Vehicles (UAVs), which were used for military purposes, are gradually expanding their application fields under the influence of electrification and digitalization. Starting from the field of aerial imaging and Intelligence Surveillance and Reconnaissance (ISR) mission, nowadays the possibility of Urban Air Mobility (UAM), which transports passengers and cargo with drones, is widely under discussion. In order to occupy the rapidly growing global unmanned aerial vehicle market in advance, it is necessary to secure core technologies and develop key UAVs components based on the new technologies. In the navigation field, it is necessary to secure a precise position with guaranteed reliability and continuity, unrelated to the operating environments. The reliability and continuity should be secured in the algorithm level and in the H/W component levels also. In order to achieve this technical goal, the Ministry of Science and ICT has launched the 'Unmanned Vehicle Core Technology Research and Development Program' in 2019 to support the R&D on the unmanned vehicle technologies. In this paper, authors introduce the unmanned vehicle core technology research and development program to the related researchers. The authors summarize the backgrounds of the program and show the technological tasks and objectives on the sub-programs in the unmanned vehicle navigation program. We present the program schedules especially focused on the test and evaluation of the developed technologies and components.

Noise and Fault Diagonois Using Control Theory

  • Park, R. W.;J. S. Kook;S. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.301-307
    • /
    • 1998
  • The goal of this paper is to describe an advanced method of the fault diagnois using Control Theory with reference to a crack detection, a new way to localize the crack position under infulence of the plant disturbance and white measurement noise on a rotating shaft. As a first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton - principle and in this way the system is modelled by various subsystems. The equations of motion with crack is established by adaption of the local stiffness change through breathing and gaping from the crack to the equation of motion with un-damaged shaft. This is supposed to be regarded as reference for the given system. Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear State Observer is designed in order to detect the crack on the shaft. This is elementary NL- observer(EOB). Using the elementary observer, an Estimator(Observer) Bank is established and arranged at the certain position on the shaft. In case a crack is found and its position is known, the procedure for the estimation of the depth is going to begin.

  • PDF

Finding Needles in a Haystack with Light: Resolving the Microcircuitry of the Brain with Fluorescence Microscopy

  • Rah, Jong-Cheol;Choi, Joon Ho
    • Molecules and Cells
    • /
    • v.45 no.2
    • /
    • pp.84-92
    • /
    • 2022
  • To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.