• Title/Summary/Keyword: goal detection

Search Result 292, Processing Time 0.023 seconds

A Study on Optimal Developmental Cost for Quality Factors of Integrated Information Security Systems (통합정보보호시스템의 최적 품질 확보를 위한 최소개발비용 탐색에 관한 연구)

  • Park, You-Jin;Choi, Myeong-Gil
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • To protect information resources, many organizations including private corporate and government employ integrated information security systems which provide the functions of intrusion detection, firewall, and virus vaccine. So, in order to develop a reliable integrated information security system during the development life cycle, the managers in charge of the development of the system must effectively distribute the development resources to the quality factors of an integrated information security system. This study suggests a distribution methodology that minimizes the total cost with satisfying the minimum quality level of an integrated information security system by appropriately assigning development resources to quality factors considered. To achieve this goal, we identify quality factors of an integrated information system and then measure the relative weights among the quality factors using analytic hierarchy process (AHP). The suggested distribution methodology makes it possible to search an optimal solution which minimizes the total cost with satisfying the required quality levels of processes by assigning development resources to quality factors during the development life cycle.

Imaging Cancer Metabolism

  • Momcilovic, Milica;Shackelford, David B.
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.81-92
    • /
    • 2018
  • It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter (약동학적 파라미터를 이용한 시간경로 마이크로어레이 자료의 군집분석)

  • Lee, Hyo-Jung;Kim, Peol-A;Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.623-631
    • /
    • 2011
  • A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.

Nondestructive Internal Defects Evaluation for Pear Using NIR/VIS Transmittance Spectroscopy

  • Ryu, D.S.;Noh, S.H.;Hwnag, H.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Internal defects such as browning of the flesh and blackening and rot of the ovary of pear can be easily developed because of the inadequate environmental conditions during the storage and distribution of fruit. The quality assurance system for the agricultural product is to be settled in Korea. All defected agricultural products should be excluded prior to the distribution to enhance the commercial values. However, early stage on-line defect detection of agricultural product is very difficult and even more difficult in a case of the internal defects. The goal of this research is to develop a system that can detect and classify internal defects of agricultural produce on-line using VIS/NIR transmittance spectroscopy. And Shingo pear, which is one of the famous species of Korean pear, was used for the experiment. Soft independence modeling of class analogy (SIMCA) algorithm was employed to analyze the transmittance spectroscopic data qualitatively. On-line classification system was constructed and classification model was developed and validated. As a result, the correct classification rate (CCR) using the developed classification model was 96.1 %.

  • PDF

An Effective Method for the Concentration and Detection of Enteroviruses from Water Samples by Combined Cell Culture-Polymerase Chain Reaction (수계 장바이러스의 효과적인 농축과 검출방법의 개발)

  • 장경립;정은영
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.368-373
    • /
    • 2000
  • Enteroviruses in the environment pose a public health risk because they can be transmitted via the fecal-oral route through contaminated water, and low numbers are able to initiate an infection in humans. Because the levels of viruses typically found in environmental water and drinking water are low, they must be concentrated from hundreds to thousands of liters of water. Therefore, the main goal of this study was the development of a rapid, simple and efficient procedure to concentrate, isolate and detect enteroviruses from environmental water samples. Viruses were first concentrated by adsorption to 1 MDS cartridge filter and then eluted with approximately 0.5 liter of 1.5% beef extract/0.05M glycin(pH 9.4). In this study, several procedures to concentrate and purify intact viruses from beef extract obtained from the adsorbent filters were tested. Among them, organic floccuration was the best reliable method for reconcentration. sample volume could be reduced to 200∼400 folds and the efficiency of virus recovery through the procedure was over 72%. Finally, the samples were filtered through a membrane disk filter and then analyzed by either the plaque assay or combined cell culture-polymerase chain reaction.

  • PDF

A Retrospective Review of Iatrogenic Skin and Soft Tissue Injuries

  • Lee, Tae Geun;Chung, Seum;Chung, Yoon Kyu
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.412-416
    • /
    • 2012
  • Background Even though the quality of medical and surgical care has improved remarkably over time, iatrogenic injuries that require surgical treatment including injuries caused by cast and elastic bandage pressure, extravasation, and dopamine-induced ischemia still frequently occur. The goal of this study was to estimate the incidence and analyze the distribution of iatrogenic injuries referred to our department. Methods A retrospective clinical review was performed from April 2006 to November 2010. In total, 196 patients (116 females and 80 males) were referred to the plastic surgery department for the treatment of iatrogenic injuries. We analyzed the types and anatomic locations of iatrogenic complications, along with therapeutic results. Results An extravasation injury (65 cases, 37.4%) was the most common iatrogenic complication in our study sample, followed by splint-induced skin ulceration, dopamine-induced necrosis, prefabricated pneumatic walking brace-related wounds and elastic bandage-induced wounds. Among these, prefabricated pneumatic walking brace-related complication incidence increased the most during the 5-year study period. Conclusions The awareness of the very common iatrogenic complications and its causes may allow physicians to reduce their occurrence and allow for earlier detection and referral to a plastic surgeon. We believe this is the first study to analyze iatrogenic complications referred to a plastic surgery department in a hospital unit.

Analysis of Rice Field Drought Area Using Unmanned Aerial Vehicle (UAV) and Geographic Information System (GIS) Methods (무인항공기와 GIS를 이용한 논 가뭄 발생지역 분석)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.21-28
    • /
    • 2017
  • The main goal of this paper is to assess application of UAV (Unmanned Aerial Vehicle) remote sensing and GIS based images in detection and measuring of rice field drought area in South Korea. Drought is recurring feature of the climatic events, which often hit South Korea, bringing significant water shortages, local economic losses and adverse social consequences. This paper describes the assesment of the near-realtime drought damage monitoring and reporting system for the agricultural drought region. The system is being developed using drought-related vegetation characteristics, which are derived from UAV remote sensing data. The study area is $3.07km^2$ of Wonbuk-myeon, Taean-gun, Chungnam in South Korea. UAV images were acquired three times from July 4 to October 29, 2015. Three images of the same test site have been analysed by object-based image classification technique. Drought damaged paddy rices reached $754,362m^2$, which is 47.1 %. The NongHyeop Agricultural Damage Insurance accepted agricultural land of 4.6 % ($34,932m^2$). For paddy rices by UAV investigation, the drought monitoring and crop productivity was effective in improving drought assessment method.

Realtime Monitoring System using AJAX + XML (AJAX+XML 기반의 모니터링 시스템)

  • Choi, Yun Jeong;Park, Seung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.39-49
    • /
    • 2009
  • Nowadays, according to rapid development of computing environments, information processing and analysis system are very interesting research area. As a viewpoint of data preparation-processing-analysis in knowledge technology, the goal of automated information system is to satisfy high reliability and confidence and to minimize of human-administrator intervention. In addition, we expect the system which can deal with problem and abnormal error effectively as a fault detection and fault tolerance. In this paper, we design a monitoring system as follows. A productive monitoring information from various systems has unstructured forms and characteristics and crawls informative data by conditions and gathering rules. For representing of monitering information which requested by administrator, running-status can be able to check dynamically and systematic like connection/closed status in real-time. Our proposed system can easily correct and processing for monitoring information from various type of server and support to make objective judgement and analysis of administrator under operative target of information system. We implement semi-realtime monitering system using AJAX technology for dynamic browsing of web information and information processing using XML and XPATH. We apply our system to SMS server for checking running status and the system shows that has high utility and reliability.

3D Shape Descriptor for Segmenting Point Cloud Data

  • Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.643-651
    • /
    • 2012
  • Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).

A Design of Automated Contingency Management and Case Study for Monopropellant Propulsion System (단일추진시스템의 ACM 설계 및 사례연구)

  • Lee, Young-Jin;Lee, Kwon-Soon;Vachtsevanos, George
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.1-11
    • /
    • 2008
  • Increasing demand for improved reliability and survivability of mission-critical systems is driving the development of health monitoring and Automated Contingency Management (ACM) systems. An ACM system is expected to adapt autonomously to fault conditions with the goal of still achieving mission objectives by allowing some degradation in system performance within permissible limits. ACM performance depends on supporting technologies like sensors and anomaly detection, diagnostic/prognostic and reasoning algorithms. This paper presents the development of a generic prototype test bench software framework for developing and validating ACM systems for advanced propulsion systems called the Propulsion ACM (PACM) Test Bench. The architecture has been implemented for a Monopropellant Propulsion System (MPS) to demonstrate the validity of the approach. A Simulink model of the MPS has been developed along with a fault injection module. It has been shown that the ACM system is capable of mitigating the failures by searching for an optimal strategy. Furthermore, the concepts of Validation and Verification (V&V) of such systems are introduced with relevant examples.

  • PDF