• 제목/요약/키워드: glycogen synthase kinase

검색결과 97건 처리시간 0.03초

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향 (The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification)

  • 송진수;진은정
    • 생명과학회지
    • /
    • 제19권10호
    • /
    • pp.1346-1351
    • /
    • 2009
  • Neural crest는 신경계의 발생과정에서 생긴 특정화된 외배엽으로서 말초신경계(peripheral nervous system)의 모든 sensory cells과 peripheral cells, unipolar spinal ganglion cell, cranial sensory ganglia, peripheral nerve의 neurolemmal sheath cells, ganglia의 capsule cells, sympathetic ganglia, chromaffin cells, pigment cell 등의 자율신 경계의 대부분의 세포로 분화 한다. 최근pluripotetic neural crest cells의 운명이 이미 제한되어 있으며, 이러한 fate-restricted crest cells이 neural tube에서 emigration된다고 보고된바 있다. 또한 본 연구자는 Wnt와 Wnt의 antagonist가 neural crest cell의 specification이 일어나는 시기에 발현하여, neural crest cell의 segregation과 differentiation에 직접적으로 관여함을 밝혔다. 이를 보다 명확히 규명하기 위해, 본 연구에서는 neural tube에 Wnt-3a expressing cell의 grafting 혹은 dominant negative GSK construct의 electroporation을 통해 Wnt signaling을 modulation 하여 downstream mediator를 조사하였다. Wnt signaling의 stimulation은 neural crest cell의 melanoblast 로의 commitment를 유도하였으며, 이와 더불어 cadherin 7과 slug의 발현을 조절함을 확인하였다.

Down-regulation of EZH2 by RNA Interference Inhibits Proliferation and Invasion of ACHN Cells via the Wnt/β-catenin Pathway

  • Yuan, Jun-Bin;Yang, Luo-Yan;Tang, Zheng-Yan;Zu, Xiong-Bing;Qi, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6197-6201
    • /
    • 2012
  • Although enhancer of zeste homolog 2 (EZH2) has been reported as an independent prognostic factor in renal cell carcinoma (RCC), little is known about the exact mechanism of EZH2 in promoting the genesis of RCC. However, several studies have shown that dysregulation of the Wnt/${\beta}$-catenin signaling pathway plays a crucial role. Therefore, we determined whether EZH2 could affect ACHN human RCC cell proliferation and invasion via the Wnt/${\beta}$-catenin pathway. In the present study, we investigated the effects of short interfering RNA (siRNA)-mediated EZH2 gene silencing on Wnt/${\beta}$-catenin signaling in ACHN cells. EZH2-siRNA markedly inhibited the proliferation and invasion capabilities of ACHN, while also reducing the expression of EZH2, Wnt3a and ${\beta}$-catenin. In contrast, cellular expression of GSK-$3{\beta}$ (glycogen synthase kinase-$3{\beta}$), an inhibitor of the Wnt/${\beta}$-catenin pathway, was conspicuously higher after transfection of EZH2 siRNA. These preliminary findings suggest EZH2 may promote proliferation and invasion of ACHN cells via action on the Wnt/${\beta}$-catenin signaling pathway.

Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway

  • Ko, Gyeong-A;Shrestha, Sabina;Cho, Somi Kim
    • Nutrition Research and Practice
    • /
    • 제12권1호
    • /
    • pp.3-12
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Sageretia thea is traditionally used as a medicinal herb to treat various diseases, including skin disorders, in China and Korea. This study evaluated the inhibitory effect of Sageretia thea fruit on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. The active chemical compounds in anti-melanogenesis were determined in Sageretia thea. MATERIALS/METHODS: Solvent fractions from the crude extract were investigated for anti-melanogenic activities. These activities and the mechanism of anti-melanogenesis in B16F10 cells were examined by determining melanin content and tyrosinase activity, and by performing western blotting. RESULTS: The n-hexane fraction of Sageretia thea fruit (HFSF) exhibited significant anti-melanogenic activity among the various solvent fractions without reducing viability of B16F10 cells. The HFSF suppressed the expression of tyrosinase and tyrosinase-related protein 1 (TRP1). The reduction of microphthalmia-associated transcription factor (MITF) expression by the HFSF was mediated by the Akt/glycogen synthase kinase 3 beta ($GSK3{\beta}$) signaling pathway, which promotes the reduction of ${\beta}-catenin$. Treatment with the $GSK3{\beta}$ inhibitor 6-bromoindirubin-3'-oxime (BIO) restored HFSF-induced inhibition of MITF expression. The HFSF bioactive constituents responsible for anti-melanogenic activity were identified by bioassay-guided fractionation and gas chromatography-mass spectrometry analysis as methyl linoleate and methyl linolenate. CONCLUSIONS: These results indicate that HFSF and its constituents, methyl linoleate and methyl linolenate, could be used as whitening agents in cosmetics and have potential for treating hyperpigmentation disorders in the clinic.

Neuroprotective Effect of Epalrestat on Hydrogen Peroxide-Induced Neurodegeneration in SH-SY5Y Cellular Model

  • Lingappa, Sivakumar;Shivakumar, Muthugounder Subramanian;Manivasagam, Thamilarasan;Somasundaram, Somasundaram Thirugnanasambandan;Seedevi, Palaniappan
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.867-874
    • /
    • 2021
  • Epalrestat (EPS) is a brain penetrant aldose reductase inhibitor, an approved drug currently used for the treatment of diabetic neuropathy. At near-plasma concentration, EPS induces glutathione biosynthesis, which in turn reduces oxidative stress in the neuronal cells. In this study, we found that EPS reduces neurodegeneration by inhibiting reactive oxygen species (ROS)-induced oxidative injury, mitochondrial membrane damage, apoptosis and tauopathy. EPS treatment up to 50 µM did not show any toxic effect on SH-SY5Y cell line (neuroblastoma cells). However, we observed toxic effect at a concentration of 100 µM and above. At 50 µM concentration, EPS showed better antioxidant activity against H2O2 (100 µM)-induced cytotoxicity, ROS formation and mitochondrial membrane damage in retinoic acid-differentiated SH-SY5Y cell line. Furthermore, our study revealed that 50 µM of EPS concentration reduced the glycogen synthase kinase-3 β (GSK3-β) expression and total tau protein level in H2O2 (100 µM)-treated cells. Findings from this study confirms the therapeutic efficacy of EPS on regulating Alzheimer's disease (AD) by regulating GSK3-β and total tau proteins phosphorylation, which helped to restore the cellular viability. This process could also reduce toxic fibrillary tangle formation and disease progression of AD. Therefore, it is our view that an optimal concentration of EPS therapy could decrease AD pathology by reducing tau phosphorylation through regulating the expression level of GSK3-β.

Ethanolic Extract of Pancake Mixture Powder Supplemented with Helianthus tuberosus Enhances Antidiabetic Effects via Inhibiting Inflammatory Mediator NO Production

  • Lee, Kyoung-Dong;Sun, Hyeon-Jin;Lee, Mina;Chun, Jiyeon;Shin, Tai-Sun;Choi, Kap Seong;Shim, Sun-Yup
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.228-234
    • /
    • 2022
  • Helianthus tuberosus is perennial plant as Compositae family and is shown various physiological activities such as analgesic, antipyretic, anti-inflammatory, anti-fungal, anti-spasmodic, aperient, cholagogue, diuretic, spermatogenic, stomachic, and tonic effects. In this study, we investigated the antidiabetic and anti-inflammatory effects of pancake mixture powder (PM) supplemented with H. tuberosus (PMH) in rat skeletal muscle L6 cells and murine macrophage RAW 264.7 cells, respectively. PM and PMH inhibited in vitro α-glucosidase activity. Glucose consumption was increased by PM and PMH without cytotoxicity in rat myoblast L6 cells. Western blot analysis revealed that PM and PMH down-regulated glycogen synthase kinase (GSK)-3β activation in L6 cells. PM and PMH inhibited inflammatory mediator, nitric oxide (NO) production without cytotoxicity in LPS-induced RAW 264.7 cells. The anti-diabetic and anti-inflammatory effects of PMH was more stronger than those of PM. Anti-diabetic and anti-inflammatory effects of PMH would be due to functional characteristics of the supplemented H. tuberosus and the presence of garlic and onion used as ingredients of PM. Taken together, our results that addition of functional materials such as H. tuberosus in product has synergic effects and PMH is potential candidate for treatment of diabetes through inhibiting inflammation.

Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway

  • Radhika Adhikari;Saugat Shiwakoti;Eunmin Kim;Ik Jun Choi;Sin-Hee Park;Ju-Young Ko;Kiyuk Chang;Min-Ho Oak
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.515-525
    • /
    • 2023
  • The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.

Inhibition of TPA-induced metastatic potential by morin hydrate in MCF-7 human breast cancer cells via the Akt/GSK-3β/c-Fos signaling pathway

  • Kyu-Shik Lee;Gi Suk Nam;Junyoung Baek;Soyoung Kim;Kyung-Soo Nam
    • International Journal of Oncology
    • /
    • 제56권2호
    • /
    • pp.630-640
    • /
    • 2020
  • Plant flavonoid 2',3,4',5,7-pentahydroxyflavone (morin hydrate), isolated from the family Moraceae (Morus alba L.), is known to have anti-inflammatory and anticancer effects. However, its pharmaceutical effects on metastasis have not been fully elucidated to date. Therefore, the current study investigated the effects of morin hydrate on cancer metastasis in MCF-7 human breast cancer cells. The results showed that morin hydrate suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell migration and invasion via the inhibition of matrix metalloproteinase (MMP)-9 activity. Furthermore, gene expression level of MMP-9, MMP-7, urokinase plasminogen activator (uPA), uPA receptor (uPAR) and fibronectin were significantly decreased by morin hydrate treatment. Morin hydrate inhibited the phosphorylation of Akt and glycogen synthase kinase (GSK)-3β, and downregulated the expression of an activator protein-1 subunit c-Fos. In addition, the GSK-3β phosphorylation and c-Fos expression were suppressed by PI3K/Akt pathway inhibitors, LY294002 and wortmannin. Taken together, these results demonstrated that morin hydrate reduced the metastatic potential in TPA-treated MCF-7 human breast cancer cells via the inhibition of MMPs, uPA and uPAR, and the underlying Akt/GSK-3β/c-Fos pathway. Therefore, the present investigation suggested that morin hydrate may be a natural substance with a preventive potential for metastasis in breast cancer cells.

Generation of Urothelial Cells from Mouse-Induced Pluripotent Stem Cells

  • Dongxu Zhang;Fengze Sun;Huibao Yao;Di Wang;Xingjun Bao;Jipeng Wang;Jitao Wu
    • International Journal of Stem Cells
    • /
    • 제15권4호
    • /
    • pp.347-358
    • /
    • 2022
  • Background and Objectives: The search for a suitable alternative for urethral defect is a challenge in the field of urethral tissue engineering. Induced pluripotent stem cells (iPSCs) possess multipotential for differentiation. The in vitro derivation of urothelial cells from mouse-iPSCs (miPSCs) has thus far not been reported. The purpose of this study was to establish an efficient and robust differentiation protocol for the differentiation of miPSCs into urothelial cells. Methods and Results: Our protocol made the visualization of differentiation processes of a 2-step approach possible. We firstly induced miPSCs into posterior definitive endoderm (DE) with glycogen synthase kinase-3𝛽 (GSK3𝛽) inhibitor and Activin A. We investigated the optimal conditions for DE differentiation with GSK3𝛽 inhibitor treatment by varying the treatment time and concentration. Differentiation into urothelial cells, was directed with all-trans retinoic acid (ATRA) and recombinant mouse fibroblast growth factor-10 (FGF-10). Specific markers expressed at each stage of differentiation were validated by flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR) assay, immunofluorescence staining, and western blotting Assay. The miPSC-derived urothelial cells were successfully in expressed urothelial cell marker genes, proteins, and normal microscopic architecture. Conclusions: We built a model of directed differentiation of miPSCs into urothelial cells, which may provide the evidence for a regenerative potential of miPSCs in preclinical animal studies.

Cigarette Smoke Extract Enhances IL-17A-Induced IL-8 Production via Up-Regulation of IL-17R in Human Bronchial Epithelial Cells

  • Lee, Kyoung-Hee;Lee, Chang-Hoon;Woo, Jisu;Jeong, Jiyeong;Jang, An-Hee;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • 제41권4호
    • /
    • pp.282-289
    • /
    • 2018
  • Interleukin-17A (IL-17A) is a pro-inflammatory cytokine mainly derived from T helper 17 cells and is known to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) has been considered as a primary risk factor of COPD. However, the interaction between CS and IL-17A and the underlying molecular mechanisms have not been clarified. In the current study, we investigated the effects of cigarette smoke extract (CSE) on IL-17A-induced IL-8 production in human bronchial epithelial cells, and sought to identify the underlying molecular mechanisms. IL-8 production was significantly enhanced following treatment with both IL-17A and CSE, while treatment with either IL-17A or CSE alone caused only a slight increase in IL-8 production. CSE increased the transcription of IL-17RA/RC and surface membrane expression of IL-17R, which was suppressed by an inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt pathway (LY294002). CSE caused inactivation of glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$) via the PI3K/Akt pathway. Blockade of $GSK-3{\beta}$ inactivation by overexpression of constitutively active $GSK-3{\beta}$ (S9A) completely suppressed the CSE-induced up-regulation of IL-17R expression and the CSE-induced enhancement of IL-8 secretion. In conclusion, inactivation of $GSK-3{\beta}$ via the PI3K/Akt pathway mediates CSE-induced up-regulation of IL-17R, which contributes to the enhancement of IL-17A-induced IL-8 production.