• 제목/요약/키워드: glycerol polyethylene glycol ricinoleate

검색결과 1건 처리시간 0.014초

Effects of supplemental glycerol polyethylene glycol ricinoleate in different energy density diets on the growth performance, blood profiles, nutrient utilization, and excreta gas emission of broilers: focus on dietary glycerol polyethylene glycol ricinoleate in broilers

  • Yin, Jia;Yun, Hyeok Min;Kim, In Ho
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.219-228
    • /
    • 2018
  • This study evaluated the effects of glycerol polyethylene glycol ricinoleate (GPGR) supplementation in different energy density diets on the growth performance, blood profiles, excreta gas emission, and total tract apparent retention (TTAR) of nutrients in broilers. A total of 544 one-day-old male Ross broilers were used in a 35-day trial. The broilers were allocated into one of four treatment groups in a $2{\times}2$ factorial arrangement with two levels of energy densities (a normal energy or decreased energy density) and GPGR (0 and 0.035%). From day 18 to 35, the GPGR supplemented and normal energy density diet groups showed a significantly improved (p < 0.05) body weight gain (BWG). Meanwhile, the GPGR supplemented diet group had a significantly reduced (p < 0.05) feed conversion ratio (FCR) compared to that of the non-supplemented diet group. From day 0 to 35, the GPGR supplemented diet and the normal energy density diet groups had a significantly increased (p < 0.01) BWG and a reduced (p < 0.01) FCR. Moreover, GPGR supplementation tended to increase (p < 0.1) the TTAR of the dry matter (DM) compared with the non-supplemented diets. Likewise, the normal energy density diets had a significantly improved TTAR for the gross energy (GE) (p < 0.05) than that of the decreased energy density diets. No interactive effects were observed between the energy density and GPGR supplemented diets. In conclusion, both dietary GPGR supplementation and normal energy density diets had beneficial effects on the growth performance of broiler chickens without any adverse effects on blood profiles and excreta gas emission.