• Title/Summary/Keyword: glyceraldehyde-3-phosphate

Search Result 133, Processing Time 0.023 seconds

Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Plays a Key Role in Controlling Cell Fate Via Inhibition of Caspase Activity

  • Jang, Mi;Kang, Hyo Jin;Lee, Sun Young;Chung, Sang J.;Kang, Sunghyun;Chi, Seung Wook;Cho, Sayeon;Lee, Sang Chul;Lee, Chong-Kil;Park, Byoung Chul;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.559-563
    • /
    • 2009
  • Glyceraldehyde-3-phosphate is a key intermediate in several central metabolic pathways of all organisms. Aldolase and glyceraldehyde-3-phosphate dehydrogenase are involved in the production or elimination of glyceraldehyde-3-phosphate during glycolysis or gluconeogenesis, and are differentially expressed under various physiological conditions, including cancer, hypoxia, and apoptosis. In this study, we examine the effects of glyceraldehyde-3-phosphate on cell survival and apoptosis. Overexpression of aldolase protected cells against apoptosis, and addition of glyceraldehyde-3-phosphate to cells delayed apoptosis. Additionally, delayed apoptotic phenomena were observed when glyceraldehyde-3-phosphate was added to a cell-free system, in which artificial apoptotic process was induced by adding dATP and cytochrome c. Surprisingly, glyceraldehyde-3-phosphate directly suppressed caspase-3 activity in a reversible noncompetitive mode, preventing caspase-dependent proteolysis. Based on these results, we suggest that glyceraldehyde-3-phosphate, a key molecule in several central metabolic pathways, functions as a molecule switch between cell survival and apoptosis.

Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Prevents Cells from Apoptosis by Lowering S-Nitrosylation of Glyceraldehyde-3-Phosphate Dehydrogenase

  • Lee, Sun-Young;Kim, Jeong-Hoon;Jung, Hye-Yun;Chi, Seung-Wook;Chung, Sang-J.;Lee, Chong-Kil;Park, Byoung-Chul;Bae, Kwang-Hee;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.571-573
    • /
    • 2012
  • Glyceraldehyde-3-phosphate (G-3-P), the substrate of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is a key intermediate in several metabolic pathways. Recently, we reported that G-3-P directly inhibits caspase-3 activity in a reversible noncompetitive mode, suggesting the intracellular G-3-P level as a cell fate decision factor. It has been known that apoptotic stimuli induce the generation of NO, and NO S-nitrosylates GAPDH at the catalytic cysteine residue, which confers GAPDH the ability to bind to Siah-1, an E3 ubiquitin ligase. The GAPDH-Siah-1 complex is translocated into the nucleus and subsequently triggers the apoptotic process. Here, we clearly showed that intracellular G-3-P protects GAPDH from S-nitrosylation at above a certain level, and consequently maintains the cell survival. In case G-3-P drops below a certain level as a result of exposure to specific stimuli, G-3-P cannot inhibit S-nitrosylation of GAPDH anymore, and consequently GAPDH translocates with Siah-1 into the nucleus. Based on these results, we suggest that G-3-P functions as a molecule switch between cell survival and apoptosis by regulating S-nitrosylation of GAPDH.

PCR-mediated Recombination of the Amplification Products of the Hibiscus tiliaceus Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase Gene

  • Wu, Linghui;Tang, Tian;Zhou, Renchao;Shi, Suhua
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.172-179
    • /
    • 2007
  • PCR-mediated recombination describes the process of in vitro chimera formation from related template sequences present in a single PCR amplification. The high levels of genetic redundancy in eukaryotic genomes should make recombination artifacts occur readily. However, few evolutionary biologists adequately consider this phenomenon when studying gene lineages. The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC), which encodes a NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase in the cytosol, is a classical lowcopy nuclear gene marker and is commonly used in molecular evolutionary studies. Here, we report on the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus tiliaceus. The study suggests that recombinant areas appear to be correlated with DNA template secondary structures. Our observations highlight that recombination artifacts should be considered when studying specific and allelic phylogenies. The authors suggest that nested PCR be used to suppress PCRmediated recombination.

Identification and Characterization of New Record of Grape Ripe Rot Disease Caused by Colletotrichum viniferum in Korea

  • Oo, May Moe;Oh, Sang-Keun
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.421-425
    • /
    • 2017
  • In 2016, grape fruits showing ripe rot symptom were found in fields of Korea. The fungus was isolated and identified as Colletotrichum viniferum based on morphological characteristics and nucleotide sequence data of the internal transcribed spacer, glyceraldehyde-3-phosphate dehydrogenase and ${\beta}$-tubulin. To our knowledge, this is the first report of C. viniferum causing grape ripe rot disease of grape fruits in Korea.

Cloning and Sequence Analysis of Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Yak

  • Li, Sheng-Wei;Jiang, Ming-Feng;Liu, Yong-Tao;Yang, Tu-Feng;Wang, Yong;Zhong, Jin-Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1673-1679
    • /
    • 2008
  • In order to study the biological function of gapdh gene in yak, and prove whether the gapdh gene was a useful intra-reference gene that can be given an important role in molecular biology research of yak, the cDNA sequence encoding glyceraldehyde-3-phosphate dehydrogenase from yak was cloned by the RT-PCR method using gene specific PCR primers. The sequence results indicated that the cloned cDNA fragment (1,008 bp) contained a 1,002 bp open reading frame, encoding 333 amino acids (AAs) with a molecular mass of 35.753 kDa. The deduced amino acids sequence showed a high level of sequence identity to Bos Taurus (99.70%), Xenopus laevis (94.29%), Homo sapiens (97.01%), Mus musculus (97.90%) and Sus scrofa (98.20%). The expression of yak's gapdh gene in heart, spleen, kidney and brain tissues was also detected; the results showed that the gapdh gene was expressed in all these tissues. Further analysis of yak GAPDH amino acid sequence implied that it contained a complete glyceraldehyde-3-phosphate dehydrogenase active site (ASCTTNCL) which ranged from 148 to 155 amino acid residues. It also contained two conserved domains, a NAD binding domain in its N-terminal and a complete catalytic domain of sugar transport in its C-terminal. The phylogenetic analysis showed that yak and Bos taurus were the closest species. The prediction of secondary structures indicated that GAPDH of yak had a similar secondary structure to other isolated GAPDH. The results of this study suggested that the gapdh gene of yak was similar to other species and could be used as the intra-reference to analyze the expression of other genes in yak.

Cloning and Sequence Analysis of a Glyceraldehyde-3-phosphate Dehydrogenase Gene from Ganoderma lucidum

  • Fei Xu;Zhao Ming Wen;Li Yu Xiang
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.515-522
    • /
    • 2006
  • A cDNA library of Ganoderma lucidum has been constructed using a Zap Express cloning vector. A glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was isolated from this library by hybridization of the recombinant phage clones with a gpd-specific gene probe generated by PCR. By comparison of the cDNA and the genomic DNA sequences, it was found that the complete nucleotide sequence encodes a putative polypeptide chain of 338 amino acids interrupted by 6 introns. The predicted amino acid sequence of this gene shows a high degree of sequence similarity to the GPD proteins from yeast and filamentous fungi. The promoter region contains a CT-rich stretch, two CAAT boxes, and a consensus TATA box. The possibility of using the gpd promoter in the construction of new transformation vectors is discussed.

Evolutionary History of Two Paralogous Glyceraldehyde 3-Phosphate Dehydrogenase Genes in Teleosts

  • Kim, Keun-Yong;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.3
    • /
    • pp.177-181
    • /
    • 2008
  • Glyceraldehyde 3-phosphate dehydrogenase(GAPDH) is a key enzyme for carbohydrate metabolism in most living organisms. Recent reports and our own searches of teleost species in publicly available genomic databases have identified at least two distinct GAPDH genes in a given species. The two GAPDH genes are located on the same chromosome in teleosts, whereas they are located on the different chromosomes in mammals. Thus, we reconstructed a phylogenetic tree to better understand the evolutionary history of the GAPDH genes in the vertebrate lineage. Our phylogenetic analysis revealed unambiguously that the two GAPDH genes of teleosts are phylogenetically closely affiliated to one of the cytosolic GAPDH and spermatogenic GAPDH-S of mammals. This indicates that the two paralogous GAPDH genes shared a common ancestor and subsequently underwent a gene duplication event during early vertebrate evolution. However, GAPDH-S of teleosts showed significant differences in the polypeptide residues and tissue distribution of its mRNA transcripts from that of mammals, implying they have undergone a different history of functionalization.

New Finding of Golovinomyces salviae Powdery Mildew on Glechoma longituba (Lamiaceae), Besides Its Original Host Salvia spp.

  • In-Young Choi;Lamiya Abasova;Joon-Ho Choi;Young-Joon Choi;Hyeon-Dong Shin
    • The Korean Journal of Mycology
    • /
    • v.51 no.3
    • /
    • pp.239-243
    • /
    • 2023
  • The Golovinomyces biocellatus complex is known to consist of powdery mildew from the Golovinomyces genus, associated with host plants from the Lamiaceae family. Recent molecular phylogenetic analyses have resolved the taxonomic composition of this complex, and Golovinomyces biocellatus sensu stricto is considered to be a pathogen of Glechoma species, globally. However, this paper presents a new finding of Golovinomyces salviae on Glechoma longituba, besides its original host species of Salvia. This information was inferred by molecular phylogenetic analyses from the multi-locus nucleotide sequence dataset of intergeneric spacer (IGS), internal transcribed spacer (ITS), large subunit (LSU) of rDNA, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. Further, the asexual morphology of this fungus is described and illustrated.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Streptococcus iniae shows potential as a subunit vaccine against various streptococcal species

  • Kim, Min Sun;Choi, Seung Hyuk;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • The potential of Streptococcus iniae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an antigen for a subunit vaccine was investigated using a zebrafish model. The recombinant S. iniae GAPDH was purified using His-tag column chromatography, and antisera against the recombinant GAPDH (rGAPDH) were produced by intraperitoneal immunization of rats. By immunization with S. iniae rGAPDH, the survival rates of zebrafish against an S. iniae challenge increased, suggesting that GAPDH would be an antigen capable of inducing protective immune responses in fish. Furthermore, we demonstrated using Western blotting, that the antisera against rGAPDH of S. iniae had cross-reactivity with GAPDH from Streptococcus parauberis and Lactococcus garviae, which are also culprits of streptococcosis in cultured fish in Korea. These results suggest that S. iniae GAPDH may be used as an antigen for the development of a subunit vaccine against streptococcosis caused by diverse cocci in cultured fish.

New Record of Anthracnose Caused by Colletotrichum liriopes on Broadleaf Liriope in Korea

  • Oo, May Moe;Oh, Sang-Keun
    • The Korean Journal of Mycology
    • /
    • v.45 no.1
    • /
    • pp.68-73
    • /
    • 2017
  • In 2015, the leaves of broadleaf liriope, Liriope muscari, showing anthracnose symptoms were found in a field of Korea. The fungus was isolated and identified as Colletotrichum liriopes based on the morphological characteristics and nucleotide sequence data of the glyceraldehyde-3-phosphate dehydrogenase, internal transcribed spacer and actin genes. To the best of our knowledge, this is the first report of C. liriopes isolated from L. muscari in Korea.