• Title/Summary/Keyword: glycated hemoglobin concentration

Search Result 20, Processing Time 0.023 seconds

Novel Detection Technology for Glycated Hemoglobin using Gold Nanoparticles (금 나노입자를 이용한 새로운 당화혈색소의 검출 기술)

  • Lee, Soo Suk
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.435-439
    • /
    • 2016
  • We report a novel detection technology for glycated hemoglobin (HbA1c) that is measured primarily to identify the three-month average plasma glucose concentration. In enzymatic measuring of glycated hemoglobin, the generated hydrogen peroxide was then used as a reducing agent of gold (III) for the synthesis of gold (0). Gold nanoparticles obtained from this novel approach were measured by optical and piezoelectric methods. In optical method, we have developed polymer based film-type sensor cartridge filled with all the reagents for glycated hemoglobin analysis and the cartridge worked very well having the detection limit of 0.53% of glycated hemoglobin. On the other hand, quartz crystal microbalance (QCM) sensors also have been developed to determine the abilities of surface modified QCM sensors at various levels of the concentration of glycated hemoglobin to bind gold nanoparticles and limit of detection was 0.90%. Finally, despite of relatively lower sensitivities of QCM sensor and film-type optical sensor than well-plate based optical detection, these two sensors were available to measure the glycated hemoglobin level for diabetes patients and normal person.

Optimization of Microwave-Assisted Method for Accelerated Glycated Hemoglobin Quantification from Amino Acids to Proteins

  • Tran, Thi Thanh Huong;Jeong, Ji-Seon
    • Mass Spectrometry Letters
    • /
    • v.8 no.3
    • /
    • pp.53-58
    • /
    • 2017
  • Glycated hemoglobin ($HbA_{1c}$) has been commonly used to screen and diagnose for patients with diabetes mellitus. Here the accelerated procedure of microwave-assisted sample treatment from acid hydrolysis to enzyme digestion followed by isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) was optimized and applied to measure $HbA_{1c}$ in an effort to speed up analysis time. First, two signature peptides of $HbA_{1c}$ and hemoglobin $A_0$ were certified with amino acid analysis by setting optimized acid hydrolysis conditions to $150^{\circ}C$, 1.5 h and $10{\mu}M$ sample concentration in 8 M hydrochloric acid. Consequently, the accurate certified peptides above were used as calibration standards to implement the proteolytic procedure with endoproteinase Glu-C at $37^{\circ}C$, 700 W for 6 h. Compared to the traditional method, the microwave heating not only shortened dramatically sample preparation time, but also afforded comparable recovery yields. The optimized protocol and analytical conditions in this study are suitable for a primary reference method of $HbA_{1c}$ quantification with full SI-traceability and other similar proteins in complex biological samples.

Effects of Ginseng on the Formation of Glycated Protein (당화단백질의 형성에 미치는 인삼의 효과)

  • Maeng, Sung-Ho;Chun, Kang-Woong;Bae, Jin-Woo
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.173-177
    • /
    • 2002
  • We examined effects of red ginseng on the formation of glycated protein in vivo and in vitro. The mixtures (1 : 1 : 1, v/v/v) with glucose (1.5 g/dl, hemoglobin (10 g/d) and red ginseng extract (0.5 g/dl) in 0.067 M phosphate saline buffer were incubated for 5 days in shaking water bath (37$\^{C}$, 70 RPM). Male rats were divided into three groups with one health and two diabetes, consisting of 20 heads in each group. Diabetic rats, induced by streptozotocin injection, were treated with or without red ginseng extract (100 mg/kg/day) for 3 months. The concentration of blood glucose and the rate of glycated hemoglobin were determined by commercial kits. The rate of glycated hemoglobin was significantly decreased by the addition of ginseng extract in comparison with non-addition group in vitro (12.17$\pm$ 1.01% vs 15.9$\pm$ 1.95%, meansd, p<0.01). Even though the levels of blood glucose in rats were not significantly different from each other, the rate of glycated hemoglobin in ginseng treated diabetic rats was $\pm$ se significantly lower than non-treated diabetic rats after 3 months (15.1$\pm$ 2.06% vs 20.1 $\pm$ 2.9%, mean$\pm$ sd, p<0.05). Additionally, the body weight was increased, drinking water volume was decreased non-significantly by the treatment of ginseng extract. These results suggest that ginseng can also inhibit the formation of glycated protein by other mechanisms which are not related with hyoglyemic effect of ginseng.

Effect of the magnetized water supplementation on blood glucose, lymphocyte DNA damage, antioxidant status, and lipid profiles in STZ-induced rats

  • Lee, Hye-Jin;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.34-42
    • /
    • 2013
  • This study investigated the effects of magnetized water supplementation on blood glucose, DNA damage, antioxidant status, and lipid profiles in streptozotocin (STZ)-induced diabetic rats. There were three groups of 4-week-old male Sprague-Dawley rats used in the study: control group (normal control group without diabetes); diabetes group (STZ-induced diabetes control); and magnetized water group (magnetized water supplemented after the induction of diabetes using STZ). Before initiating the study, diabetes was confirmed by measuring fasting blood glucose (FBS > 200 dl), and the magnetized water group received magnetized water for 8 weeks instead of general water. After 8 weeks, rats were sacrificed to measure the fasting blood glucose, insulin concentration, glycated hemoglobin level, degree of DNA damage, antioxidant status, and lipid profiles. From the fourth week of magnetized water supplementation, blood glucose was decreased in the magnetized water group compared to the diabetes group, and such effect continued to the 8th week. The glycated hemoglobin content in the blood was increased in the diabetes group compared to the control group, but decreased significantly in the magnetized water group. However, decreased plasma insulin level due to induced diabetes was not increased by magnetized water supplementation. Increased blood and liver DNA damages in diabetes rats did significantly decrease after the administration of magnetized water. In addition, antioxidant enzyme activities and plasma lipid profiles were not different among the three groups. In conclusion, the supplementation of magnetized water not only decreased the blood glucose and glycated hemoglobin levels but also reduced blood and liver DNA damages in STZ-induced diabetic rats. From the above results, it is suggested that the long-term intake of the magnetized water over 8 weeks may be beneficial in both prevention and treatment of complications in diabetic patients.

Lotus leaf alleviates hyperglycemia and dyslipidemia in animal model of diabetes mellitus

  • Kim, Ah-Rong;Jeong, Soo-Mi;Kang, Min-Jung;Jang, Yang-Hee;Choi, Ha-Neul;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.166-171
    • /
    • 2013
  • The purpose of this study was to investigate the effects of lotus leaf on hyperglycemia and dyslipidemia in animal model of diabetes. Inhibitory activity of ethanol extract of lotus leaf against yeast ${\alpha}$-glucosidase was measured in vitro. The effect of lotus leaf on the postprandial increase in blood glucose levels was assessed in streptozotocin-induced diabetic rats. A starch solution (1 g/kg) with and without lotus leaf extract (500 mg/kg) was administered to the rats after an overnight fast, and postprandial plasma glucose levels were monitored. Four-week-old db/db mice were fed a basal diet or a diet containing 1% lotus leaf extract for 7 weeks after 1 week of acclimation to study the chronic effect of lotus leaf. After sacrifice, plasma glucose, insulin, triglycerides (TG), total cholesterol (CHOL), high-density lipoprotein (HDL)-CHOL, and blood glycated hemoglobin levels were measured. Lotus leaf extract inhibited ${\alpha}$-glucosidase activity by 37.9%, which was 1.3 times stronger than inhibition by acarbose at a concentration of 0.5 mg/mL in vitro. Oral administration of lotus leaf extract significantly decreased the area under the glucose response curve by 35.1% compared with that in the control group (P < 0.01). Chronic feeding of lotus leaf extract significantly lowered plasma glucose and blood glycated hemoglobin compared with those in the control group. Lotus leaf extract significantly reduced plasma TG and total CHOL and elevated HDL-CHOL levels compared with those in the control group. Therefore, we conclude that lotus leaf is effective for controlling hyperglycemia and dyslipidemia in an animal model of diabetes mellitus.

Anti-diabetic effects of aqueous extract of Dendropanax morbifera Lev. leaves in streptozotocin-induced diabetic Sprague-Dawley rats (Streptozotocin으로 유도된 당뇨 랫드에서 황칠나무 잎 열수추출물의 항당뇨 효과)

  • Kim, Min-Jae;Kang, Ye-Jin;Lee, Dong-Eon;Kim, Suk;Lim, Se-Hun;Lee, Hu-Jang
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.4
    • /
    • pp.38.1-38.8
    • /
    • 2021
  • This study examined the anti-diabetic effects of aqueous extracts of Dendropanax morbifera leaves (DMWEs) in streptozotocin-induced diabetic Sprague-Dawley (SD) rats. Thirty male SD rats (body weight [BW], 250.4 ± 19.7 g) were divided into the following six groups: normal control rats (NC), diabetic control rats (DC), diabetic rats treated with metformin HCl 100 mg/kg BW (DT), diabetic rats treated with DMWEs 50 mg/kg BW (DM-50), diabetic rats treated with DMWEs 100 mg/kg BW (DM-100), and diabetic rats treated with DMWEs 200 mg/kg BW (DM-200). From two weeks of administration of DMWEs, the BW of all groups treated with DMWEs increased significantly compared to DC (p < 0.05). At four weeks after treatment, the blood glucose levels in DT, DM-100, and DM-200 decreased below 200 mg/dL, while the glycated hemoglobin concentrations in all groups administered DMWEs were similar to those of NC and DT. Regarding the blood biochemical parameters, the levels of aspartate transaminase, alanine transaminase, blood urea nitrogen, and creatinine in DM-100 and DM-200 were similar to those in NC and DT. Overall, these results highlight the effectiveness of DM-100 in the treatment of diabetes.

Hypolipidemic effect of Salicornia herbacea in animal model of type 2 diabetes mellitus

  • Hwang, Ji-Yeon;Lee, Soo-Kyung;Jo, Ja-Rim;Kim, Mi-Eun;So, Hyun-Ah;Cho, Chang-Woo;Seo, Young-Wan;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.1 no.4
    • /
    • pp.371-375
    • /
    • 2007
  • To control blood glucose level as close to normal is a major goal of treatment of diabetes mellitus. Hyperglycemia and hyperlipidemia are the major risk factors for cardiovascular complications, the major cause of immature death among the patients with type 2 diabetes. The purpose of this study is to determine the hypoglycemic and hypolipidemic effects of Salicornia herbacea in animal model of type 2 diabetes and to investigate the possible mechanisms for the beneficial effects of S. herbacea. S. herbacea was extracted with 70% ethanol and desalted with 100% ethanol. Three week-old db/db mice (C57BL/KsJ, n=16) were fed AIN-93G semipurified diet or diet containing 1% desalted ethanol extract of S. herbacea for 6 weeks after 1 week of adaptation. Fasting plasma glucose, triglyceride, and total cholesterol were measured by enzymatic methods and blood glycated hemoglobin ($HbA_{1C}$) by the chromatographic method. Body weight and food intake of S. herbacea group were not significantly different from those of the control group. Fasting plasma glucose and blood glycated hemoglobin levels tended to be lowered by S. herbacea treatment. Consumption of S. herbacea extract significantly decreased plasma triglyceride and cholesterol levels (p<0.05). The inhibition of S. herbacea extract against yeast ${\alpha}$-glucosidase was 31.9% of that of acarbose at the concentration of 0.5 mg/mL in vitro. The inhibitory activity of ethanol extract of S. herbacea against porcine pancreatic lipase was 59.0% of that of orlistat at the concentration of 0.25 mg/mL in vitro. Thus, these results suggest that S. herbacea could be effective in controlling hyperlipidemia by inhibition of pancreatic lipase in animal model of type 2 diabetes.

Effects of rosiglitazone, an antidiabetic drug, on Kv3.1 channels

  • Hyang Mi Lee;Seong Han Yoon;Min-Gul Kim;Sang June Hahn;Bok Hee Choi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.95-103
    • /
    • 2023
  • Rosiglitazone is a thiazolidinedione-class antidiabetic drug that reduces blood glucose and glycated hemoglobin levels. We here investigated the interaction of rosiglitazone with Kv3.1 expressed in Chinese hamster ovary cells using the wholecell patch-clamp technique. Rosiglitazone rapidly and reversibly inhibited Kv3.1 currents in a concentration-dependent manner (IC50 = 29.8 µM) and accelerated the decay of Kv3.1 currents without modifying the activation kinetics. The rosiglitazonemediated inhibition of Kv3.1 channels increased steeply in a sigmoidal pattern over the voltage range of -20 to +30 mV, whereas it was voltage-independent in the voltage range above +30 mV, where the channels were fully activated. The deactivation of Kv3.1 current, measured along with tail currents, was also slowed by the drug. In addition, the steady-state inactivation curve of Kv3.1 by rosiglitazone shifts to a negative potential without significant change in the slope value. All the results with the use dependence of the rosiglitazone-mediated blockade suggest that rosiglitazone acts on Kv3.1 channels as an open channel blocker.

Effects of Folic Acid and Ascorbate Supplementation on Plasma Homocysteine and Oxidative Stress in Patients with Type 2 Diabetes Mellitus (제2형 당뇨병 환자에게 엽산과 아스코르브산 보충이 혈장 호모시스테인 농도와 산화 스트레스에 미치는 영향)

  • Hwang, Mi-Ri;Soh, Ju-Ryoun;Lim, Hyeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.42 no.2
    • /
    • pp.107-118
    • /
    • 2009
  • In patients with type 2 diabetes, oxidative stress could be increased by their metabolic changes. Elevated plasma homocysteine is considered as one of markers of enhanced oxidative stress. Due to oxidative stress, some complications like cardiovascular or renal diseases may develop in type 2 diabetes patients. Plasma homocysteine concentration may be increased if folate status were inadequate. Protective effects against oxidative stress may be diminished if the status of anti-oxidative nutrient as vitamin C was poor. It is, therefore, important to maintain adequate status of folate and vitamin C in type 2 diabetes patients. Thus, this study was performed to determine the effects of supplementation of folate and/or ascorbate on blood glycated hemoglobin ($HbA_{1c}$) level, serum concentrations of homocysteine and cholesterol, plasma oxidized low density-lipoprotein (LDL), concentration and plasma glutathione peroxidase (GSH-Px) activity in the patients with type 2 diabetes. A total of 92 type 2 diabetes patients participated voluntarily with written consents. They were divided into one of the four experimental groups; Control (C), Folate-supplemented (F), Ascorbate-supplemented (A), and Folate plus ascorbate-supplemented (FA). The subjects in C were taken placebo, those in F were supplemented 1 mg of folate, those in A received 1,000 mg of ascorbate, and those in FA were given 1 mg of folate plus 1,000 mg of ascorbate daily for 4 weeks. Supplementation of folate or ascorbate resulted to increase serum folate level or plasma ascorbate concentration apparently, respectively. Folate supplementation not ascorbate seemed to decrease plasma concentrations of homocysteine and oxidized LDL and reduce plasma GSH-Px activity. There might not be synergic effect of the supplementation of folate plus ascorbate. The results indicate that oxidative stress in the patients with type 2 diabetes may lower mainly by folate supplementation.