• Title/Summary/Keyword: glutamine synthetase

Search Result 78, Processing Time 0.021 seconds

Essential Cysteine Residues of Yeast Thioredoxin 2 for an electron donor to Thioredoxin Peroxidases

  • Lee, Song-Mi;Kim, Kang-Hwa;Choi, Won-Ki
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.139-143
    • /
    • 2001
  • Thioredoxin (Trx) is a redox protein possessing conserved sequence Cys-Gly-Pro-Cys in ail organisms. Trx acts as an electron donor of many proteins including thioredoxin peroxidase (TPx). Yeast Trx 2 has two redox active cysteine residues at positions 31 and 34. To investigate the redox activity of each cysteine, we generated mutants C31S, C34S, and C31S/C34S using site directed mutagenesis and examined the redox activity of Trx variants as an electron donor for yeast TPx enzymes. None of the three Cysmutated Trx proteins was active as a redox protein in the 5', 5'-dithiobis-(2-dinitrobenzoic acid) reduction under the condition of the presence of NADPH and thioredoxin reductase, and in the thioredoxin dependent peroxidase activity of yeast TPx II. C34S enhanced the glutamine synthetase protection activity of yeast TPx I, even though 100 times more protein was needed to exhibit the same activity to WT. The formation of a mixed disulfide intermediate between Trx and TPx II subunits was analyzed by SDS-PAGE. The mixed dieter form of TPx II was found only for C34S. These results suggest that Cys-31 more effectively acts as an electron donor for TPx enzymes.

  • PDF

Nitrogenase Derepression and Associated Metabolism in a Microaerophilic Cyanobacterium, Plectonema boryanum

  • Pandey, Kapil Deo;Sukla, Sarkar;Naz, Shaheen;Smita, Chaturvedi;Ajaikumar, Kashyap
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.179-185
    • /
    • 2001
  • Nitrate grown cells of cyanobacterium Plectonema boryanum, transferred to nitrogen stress, evolved nitrogenase catalyzed $H_2$ under microaerophilic condition. Nitrogen ($N_2$) in gs phase, low light intensity, and reducing substances in incubation phase stimulated $N_2$fixation ($H_2\;evolution$). Cyanobacterium grew slowly under microaerobic condition with a low intracellular ammonia pool. Nitrogen sources (${NO_3}^-,{NH_4}^+,\;and\;CH_3NH_3$) inhibited nitrogenase and glutamine synthetase (GS) transferase activity, and methylamine behaved like an ammonical nitrogen source. Depletion of molybdenum (Mo) and addition of tungsten (W) in the incubation medium inhibited $H_2$ evolution, Cyanobacterium was able to take up nitrate and expressed nitrate reductase (NR) activity under microaerophilic condition at an extremely slow rate.

  • PDF

A Case of Acute Glufosinate Ammonium ($BASTA^{(R)}$) Intoxication Associated with Various Neurological Abnormalities (다양한 신경학적 이상을 나타낸 glufosinate ammonium(바스타$^{(R)}$) 급성 경구 중독 1례)

  • Paik Jin Hui;Kim Jun Sig;Yi Hyeon Gyu;Park Hyun Joo;Ha Choong-Kun;Roh Hyung-Keun
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.3 no.2
    • /
    • pp.103-106
    • /
    • 2005
  • BASTA is an herbicide which contains glufosinate ammonium as a main component with an anionic surfactant, polyoxyethylene alkylether sulfate, and nonselectively inhibits glutamine synthetase. It became a wildly used herbicide in Korea and its intoxication is now increasing. A 42-year old woman ingested about 300ml of BASTA in a suicide attempt. She showed unconsciousness and respiratory distress in the beginning, and later developed multiple generalized convulsions, low blood pressure, fever and diabetes insipidus. Although she became alert 12 days after the ingestion, she showed retrograde amnesia for a period of about recent 10 years. A neuropsychological test on day 22 revealed frontal lobe dysfunction, visual memory disturbance and slight decrease in visuospatial function. All these neurological abnormalities that might occur due to glufosinate ammonium were almost improved in the follow-up test performed a month later.

  • PDF

Germination and Proteome Profile Characteristics of Wheat Seeds Treated under Different Concentrations of Abscisic Acid (Abscisic acid 농도에 따른 밀 종자의 발아와 단백질체의 발현 특성)

  • Jeong, Jae-Hyeok;Kim, Dae-Wook;Hwang, Woon-Ha;An, Sung-Hyun;Jeong, Han-Yong;Lee, Hyeon-Seok;Choi, In-Bea;Choi, Kyung-Jin;Yun, Jong-Tak;Yun, Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • This study was conducted to investigate the germination and proteome profile characteristics of wheat seeds treated under various concentrations of abscisic acid (ABA). After-ripening, the seeds of three wheat cultivars (Baegjoong, Keumkang, and Uri) showing different levels of dormancy were used. Germination index and germination rate of the cultivars was higher than 0.95% and 98%, respectively, and these were not significantly different under 0, 10, 30, and $50{\mu}M$ ABA at 7 d after germination. However, the growth of the shoot and radicle was significantly inhibited at 10, 30, and $50{\mu}M$ ABA compared to that at $0{\mu}M$ ABA. Mean ABA content of the embryos of seeds germinated at 0 and $50{\mu}M$ ABA for 7 d was 0.8 and $269.0ngmg^{-1}DW$, respectively. Proteins extracted from embryos germinated for 4 d were analyzed by two-dimensional gel electrophoresis, and proteins showing a difference of 1.5-fold or greater in their spot volume relative to that of $0{\mu}M$ ABA were identified. The expression of four protein spots increased at $50{\mu}M$ ABA and two protein spots were detected only at $50{\mu}M$ ABA; these six proteins were all identified as globulin types. Conversely, the expression of three protein spots decreased at $50{\mu}M$ ABA and were identified as cytosolic glutamine sysnthetase, isocitrate dehydrogenase, and S-adenosylmethionine synthetase 2. In conclusion, ABA did not inhibit the germination rate regardless of pre-harvest sprouting characteristics of the cultivars. However, the growth of the shoot and radicle was significantly inhibited by ABA, most likely through the down regulation of glutamine, methyl group donor, and polyamines biosynthesis, among others, while accompanied by globulin accumulation in the embryos.

Effects of TGF ${\beta}_1$ on the Growth and Biochemical Changes in Cultured Rat Glial Cells (Transforming growth factor ${\beta}_1$이 배양랫트 신경교세포의 성장 및 생화학적 변화에 미치는 영향)

  • Kim, Yong-Sik;Youn, Yong-Ha;Park, Nan-Hyang;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.167-179
    • /
    • 1994
  • Recent evidence indicates that glial cells have a wide range of funtions which are critical for maintaining a balanced homeostatic environment in the central nervous system(CNS) peripheral nervous system(PNS). Morever, astrocytes are known to participate in the tissue repair and neuroimmunologic events within the CNS through many kinds of growth factors and cytokines. We investigated the effect of $TGF\;{\beta}_1$, on the growth and biochemical changes of rat glial cells in culture. The proliferative effect was determined by $^3H-thymidine$ uptake and the double immunostain with anti-cell-specific marker and anti-Bromodeoxyuridine(BrdU) antibody. To check the effect of biochemical changes we compared the amounts of glial fibrillar acidic protein(GFAP) and the activity of glutamine synthetase(GS) in astrocyte. And the amounts of myelin basic protein and the activity of 2',3'-cyclic nucleotide phosphohydrolase(CNPase) were measured in oligodendrocyte and the amounts of peripheral myelin in Schwann cell. When $TGF\;{\beta}_1$, was treated for 2 days with cultured glial cell, $TGF\;{\beta}_1$, decreased the $^3H-thymidine$ uptake and proliferation index of double immunostain of astrocytes, which indicates the inhibition of astroglial DNA synthesis, but stimulated the growth of Schwann cell. Also, $TGF\;{\beta}_1$, decrease the GS activity and increased the amounts of GFAP in astrocyte. In the case of Schwann cells the amounts of peripheral myelin was increased when treated with $TGF\;{\beta}_1$. However, $TGF\;{\beta}_1$, didn't show any effect on the proliferation and biochemical changes in oligodendrocyte. These results suggest that $TGF\;{\beta}_1$, might have a critical action in the regulation of proliferation and biochemical changes in glial cells, especially astrocyte.

  • PDF

Proteomic Response of Alfalfa Subjected to Aluminum (Al) Stress at Low pH Soil

  • Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • In order to reveal the aluminum (Al) stress tolerance mechanisms in alfalfa plant at low pH soil, a proteomic approach has been conducted. Alfalfa plants were exposed to Al stress for 5 days. The plant growth and total chlorophyll content are greatly affected by Al stress. The malondialdehyde (MDA) and $H_2O_2$ contents were increased in a low amount but free proline and soluble sugar contents, and the DPPH-radical scavenging activity were highly increased. These results indicate that antioxidant activity (DPPH activity) and osmoprotectants (proline and sugar) may involve in ROS ($H_2O_2$) homeostasis under Al stress. In proteomic analysis, over 500 protein spots were detected by 2-dimentional gel electrophoresis analysis. Total 17 Al stress-induced proteins were identified, of which 8 protein spots were up-regulated and 9 were down-regulated. The differential expression patterns of protein spots were selected and analyzed by the peptide mass fingerprinting (PMF) using MALDI-TOF MS analysis. Three protein spots corresponding to Rubisco were significantly down-regulated whereas peroxiredoxin and glutamine synthetase were up-regulated in response to Al stress. The different regulation patterns of identified proteins were involved in energy metabolism and antioxidant / ROS detoxification during Al stress in alfalfa. Taken together, these results provide new insight to understand the molecular mechanisms of alfalfa plant in terms of Al stress tolerance.

Temporal Changes in N Assimilation and Metabolite Composition of Nitrate-Affected Tomato Plants

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Kim, Rogyoung;Lee, Juyoung;Lee, Jongsik;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.910-919
    • /
    • 2012
  • The role of inorganic nitrogen assimilation in the production of amino acids, organic acids and soluble sugars is one of the most important biochemical processes in plants, and, in order to achieve normally, nitrate uptake and assimilation is essential. For this reason, the characterization of nitrate assimilation and metabolite composition from leaves, roots and xylem sap of tomato (Solanum lycopersicum) was investigated under different nitrate levels in media. Tomato plants were grown hydroponically in liquid culture under five different nitrate regimes: deficient (0.25 and 0.75 mM $NO_3{^-}$), normal (2.5 mM $NO_3{^-}$) and excessive (5.0 and 10.0 mM $NO_3{^-}$). All samples, leaves, roots and xylem sap, were collected after 7 and 14 days after treatment. The levels of amino acids, soluble sugars and organic acids were significantly decreased by N-deficiency whereas, interestingly, they remained higher in xylem sap as compared with N-normal and -surplus. The N-excessive condition did not exert any significant changes in metabolites composition, and thus their levels were similar with N-normal. The gene expression and enzyme activity of nitrate reductase (NR), nitrite reductase (NIR) and glutamine synthetase (GS) were greatly influenced by nitrate. The data presented here suggest that metabolites, as a signal messenger, existed in xylem sap seem to play a crucial role to acquire nitrate, and, in addition, an increase in ${\alpha}$-ketoglutarate pathway-derived amino acids under N-deficiency may help to better understand plant C/N metabolism.

EFFECTS OF THE HERBICIDE, BUTACHLOR, ON NITROGEN FIXATION IN PHOTOTROPHIC NONSULFUR BACTERIA

  • Lee, Kyung-Mi;Kim, Jai-Soo;Lee, Hyun-Soon
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.136-147
    • /
    • 2007
  • In an effort to identify possible microbes for seeking bioagents for remediation of herbicide-contaminated soils, seven species of phototrophic nonsulfur bacteria (Rhodobacter capsulatus and sphaeroides, Rhodospirillum rubrum, Rhodopseudomonas acidophila, blastica and viridis, Rhodomicrobium vannielii) were grown in the presence of the herbicide, butachlor, and bacterial growth rates and nitrogen fixation were measured with different carbon sources. Under general conditions, all species showed 17-53% reductions in growth rate following butachlor treatment. Under nitrogen-fixing conditions, Rb. capsulatus and Rs. rubrum showed 1-4% increases in the growth rates and 2-10% increases in nitrogen-fixing abilities, while the other 5 species showed decreases of 17-47% and 17-85%, respectively. The finding that Rp. acidophila, Rp. blastica, Rp. viridis and Rm. vannielii showed stronger inhibitions of nitrogenase activity seems to indicate that species in genera Rhodobacter and Rhodospirillum are less influenced by butachlor than those in Rhodopseudomonas and Rhodomicrobium in terms of nitrogen-fixing ability. Overall, nitrogenase activity was closely correlated with both growth rate and glutamine synthetase activity (representing nitrogen metabolism). When the carbon sources were compared, pyruvate (three carbons) was best for all species in terms of growth rate and nitrogen fixation, with malate (four carbons) showing intermediate values and ribose(five carbons) showing the lowest; these trends did not change in response to butachlor treatment. We verified that each of the 7 species had a plasmid ($12.2{\sim}23.5\;Kb$). We found that all 7 species could use butachlor as a sole carbon source and 3 species were controlled by plasmid-born genes, but it is doubtful whether plasmid-born genes were responsible to nitrogen fixation.

Chronic Toxicity of the Triazole Fungicide Tebuconazole on a Heterocystous, Nitrogen-Fixing Rice Paddy Field Cyanobacterium, Westiellopsis prolifica Janet

  • Nirmal Kumar, J.I.;Bora, Anubhuti;Amb, Manmeet Kaur
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1134-1139
    • /
    • 2010
  • This study explored the chronic effects of different doses of the triazole fungicide tebuconazole on the growth, and metabolic and enzymatic functions of the filamentous paddy field cyanobacterium, Westiellopsis prolifica Janet. The growth of the cyanobacterium was determined by an estimation of the change in pigment contents. Chlorophyll-a, carotenoids, and accessory pigments such as phycocyanin, allophycocyanin, and phycoerythrin were shown to decline over a 16-day period by a factor of 92%, 93%, 83%, 95%, and 100%, respectively, with increasing doses of the fungicide. Metabolic and enzymatic activities were also adversely affected. Over the 16 days, a gradual rise in total phenol content was recorded when Westiellopsis prolifica Janet was treated with 60 ppm of the fungicide, despite the reduction in carbohydrates, proteins, and amino acids by 96%, 92%, and 90%, respectively. Moreover, the enzymes nitrate reductase (NR), glutamine synthetase (GS), and succinate dehydrogenase (SDH) also registered reductions of 93%, 90%, and 98%, respectively. This study indicates that tebuconazole, although an important fungicide used extensively in rice fields, exhibits an inhibitory effect on the growth and metabolic activities of Westiellopsis prolifica Janet and hence possibly on other varieties as well.

Blockade of Trigeminal Glutamate Recycling Produces Anti-allodynic Effects in Rats with Inflammatory and Neuropathic Pain

  • Yang, Kui-Ye;Lee, Min-Kyung;Park, Min-Kyoung;Son, Jo-Young;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.42 no.3
    • /
    • pp.129-135
    • /
    • 2017
  • The present study investigated the role of spinal glutamate recycling in the development of orofacial inflammatory pain or trigeminal neuropathic pain. Experiments were carried out on male Sprague-Dawley rats weighing between 230 and 280 g. Under anesthesia, a polyethylene tube was implanted in the atlanto-occipital membrane for intracisternal administration. IL-$1{\beta}$-induced inflammation was employed as an orofacial acute inflammatory pain model. IL-$1{\beta}$ (10 ng) was injected subcutaneously into one vibrissal pad. We used the trigeminal neuropathic pain animal model produced by chronic constriction injury of the infraorbital nerve. DL-threo-${\beta}$-benzyloxyaspartate (TBOA) or methionine sulfoximine (MSO) was administered intracisternally to block the spinal glutamate transporter and the glutamine synthetase activity in astroglia. Intracisternal administration of TBOA produced mechanical allodynia in naïve rats, but it significantly attenuated mechanical allodynia in rats with interleukin (IL)-$1{\beta}$-induced inflammatory pain or trigeminal neuropathic pain. In contrast, intracisternal injection of MSO produced anti-allodynic effects in rats treated with IL-$1{\beta}$ or with infraorbital nerve injury. Intracisternal administration of MSO did not produce mechanical allodynia in naive rats. These results suggest that blockade of glutamate recycling induced pro-nociception in na?ve rats, but it paradoxically resulted in anti-nociception in rats experiencing inflammatory or neuropathic pain. Moreover, blockade of glutamate reuptake could represent a new therapeutic target for the treatment of chronic pain conditions.