• Title/Summary/Keyword: glutamicum

Search Result 153, Processing Time 0.025 seconds

Towards Methionine Overproduction in Corynebacterium glutamicum - Methanethiol and Dimethyldisulfide as Reduced Sulfur Sources

  • Bolten, Christoph J.;Schroder, Hartwig;Dickschat, Jeroen;Wittmann, Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1196-1203
    • /
    • 2010
  • In the present work, methanethiol and dimethyldisulfide were investigated as sulfur sources for methionine synthesis in Corynebacterium glutamicum. In silico pathway analysis predicted a high methionine yield for these reduced compounds, provided that they could be utilized. Wild-type cells were able to grow on both methanethiol and dimethyldisulfide as sole sulfur sources. Isotope labeling studies with mutant strains, exhibiting targeted modification of methionine biosynthesis, gave detailed insight into the underlying pathways involved in the assimilation of methanethiol and dimethyldisulfide. Both sulfur compounds are incorporated as an entire molecule, adding the terminal S-$CH_3$ group to O-acetylhomoserine. In this reaction, methionine is directly formed. MetY (O-acetylhomoserine sulfhydrylase) was identified as the enzyme catalyzing the reaction. The deletion of metY resulted in methionine auxotrophic strains grown on methanethiol or dimethyldisulfide as sole sulfur sources. Plasmid-based overexpression of metY in the ${\Delta}$metY background restored the capacity to grow on methanethiol or dimethyldisulfide as sole sulfur sources. In vitro studies with the C. glutamicum wild type revealed a relatively low activity of MetY for methanethiol (63 mU/mg) and dimethyldisulfide (61 mU/mg). Overexpression of metY increased the in vitro activity to 1,780 mU/mg and was beneficial for methionine production, since the intracellular methionine pool was increased 2-fold in the engineered strain. This positive effect was limited by a depletion of the metY substrate O-acetylhomoserine, suggesting a need for further metabolic engineering targets towards competitive production strains.

The Effect of Redox Potential on the Kinetics of Lysine Production by Corynebacterium glutamicum (Corynebacterium glutamicum에 의한 Lysine 생산에 있어서 산화환원 전위가 발효속도론적 특성에 미치는 영향)

  • 이진희;김성준;이재흥
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.76-81
    • /
    • 1991
  • - The effect of redox potential (ORP) on lysine production by a leucine auxotrophic regulatory mutant of Corynebacterium glutclmicum on molasses medium was investigated in a 2-1 jar fermentor at pH 6.9 and $32^{\circ}C$. At a dilution rate of D=O.l $h ^1$, a maximum yield of Yr,,s=0.24 was obtained in either carbon- or leucine-limited chemostat where the redox potential was between -60 mV and - 100 mV. This level of redox potential corresponded to moderate oxygen deficiency. Under a high oxygen deficient condition of the redox potential of - 130 rnV (oxygen-limited chemostat), all the kinetic parameters such as $Y_[p/s}, q_s\; and \; q_p$ were decreased significantly and significant amounts of byproducts including glycine, alanine and valine were accumulated in the culture, indicating that the control of redox potential is important in lysine fermentation. At the redox potential of - 40 mV, on the other hand, large quantities of arginine (up to 0.38g/l) and glutamic acid (up to 0.12 g/l) were produced. A maximum lysine productivity of 2.41 g/l/h was achieved at - 66 mV under a carbon-limited condition.

  • PDF