• 제목/요약/키워드: glutamate-induced neurotoxicity

검색결과 72건 처리시간 0.026초

Cytoprotective Effects of Dihydrolipoic Acid and Lipoic Acid on the Oxidative Stress in Cultured Rat Cortical Neurons

  • Kim, Won-Ki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.427-433
    • /
    • 1998
  • In brain hypoxic-ischemia, an excess release of glutamate and a marked production of reactive oxygen species (ROS) occur in neuronal and non-neuronal cells. The present study investigated the effect of the biological antioxidants dihydrolipoic acid (DHLA) and lipoic acid (LA) on N-methyl-D-aspartate (NMDA)- and ROS-induced neurotoxicity in cultured rat cortical neurons. DHLA enhanced NMDA-evoked rises in intracellular calcium concentration ($[Ca^{2+}]_i$). In contrast, LA did not alter the NMDA-evoked calcium responses but decreased after a brief treatment of dithiothreitol (DTT), which possesses a strong reducing potential. Despite the modulation of NMDA receptor-mediated rises in $[Ca^{2+}]_i$, neither DHLA nor LA altered the NMDA receptor-mediated neurotoxicity, as assessed by measuring the amount of lactate dehydrogenase released from dead or injured cells. DHLA, but not LA, prevented the neurotoxicity induced by xanthine/xanthine oxidase-generated superoxide radicals. Both DHLA and LA decreased the glutathione depletion-induced neurotoxicity. The present data may indicate that biological antioxidants DHLA and LA protect neurons from ischemic injuries via scavenging oxygen free radicals rather than modulating the redox modulatory site(s) of NMDA receptor.

  • PDF

Amyloid ${\beta}$ 2 Protein (25-35) 유도 배양신경세포 독성에 대한 목단피의 억제효과 (Moutan Cortex Extract Inhibits Amyloid ${\beta}$ Protein (25-35)-induced Neurotoxicity in Cultured Rat Cortical Neurons)

  • 김주연;주현수;반주연;송경식;성연희
    • 한국약용작물학회지
    • /
    • 제16권6호
    • /
    • pp.409-415
    • /
    • 2008
  • Moutan cortex, the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), has pharmacological effects such as anti-inflammatory, antiallergic, analgesic and antioxidant activities. We investigated a methanol extract of Moutan cortex for neuroprotective effects on neurotoxicity induced by amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons. Exposure of cultured cortical neurons to $10\;{\mu}M\;A{\beta}$ (25-35) for 24 h induced neuronal apoptotic death. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced neuronal cell death at 30 and $50\;{\mu}g/m{\ell}$, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) which were measured by fluorescent dyes. Moutan cortex also inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}$ (25-35), which was measured by HPLC. These results suggest that Moutan cortex prevents $A{\beta}$ (25-35)-induced neuronal cell damage by interfering with the increase of $[Ca^{2+}]_i$, and then inhibiting glutamate release and ROS generation. Moutan cortex may have a therapeutic role in preventing the progression of Alzheimer's disease.

Low Non-NMDA Receptor Current Density as Possible Protection Mechanism from Neurotoxicity of Circulating Glutamate on Subfornical Organ Neurons in Rats

  • Chong, Wonee;Kim, Seong Nam;Han, Seong Kyu;Lee, So Yeong;Ryu, Pan Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.177-181
    • /
    • 2015
  • The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate ($60{\sim}100{\mu}M$), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate ($100{\mu}M$) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p<0.05). To further identify the subtype of the glutamate receptors involved, the whole cell currents induced by selective agonists were then compared. The current densities induced by AMPA (0.45 pA/pF) and kainate (0.83 pA/pF), non-NMDA glutamate receptor agonists in SFO neurons were also smaller than those in hippocampal CA1 neurons (2.44 pA/pF for AMPA, p<0.05; 2.34 pA/pF for kainate, p< 0.05). However, the current density by NMDA in SFO neurons was not significantly different from that of hippocampal CA1 neurons (1.58 vs. 1.47 pA/pF, p>0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.

오수유 MeOH 추출물이 Cyanide에 의한 신경세포의 보호효과에 미치는 영향 (Protective Effect of MeOH Extract of Evodia officinalis on Cyanide-induced Neurotoxicity in Cultured Neuroblastoma Cells)

  • 김상태;안승희;김정도;김영균
    • 생약학회지
    • /
    • 제34권4호통권135호
    • /
    • pp.282-287
    • /
    • 2003
  • We reported that neurotoxicity may contribute to cyanide-induced neuronal injury. Cyanide stimulates the release of glutamate which can activate glutamate receptors to propagate excitotoxic processes. We examined the role of plant extracts in mediating the cyanide-induced cytotoxicity and report here that the cytotoxicity assessed in SK- N-SH cell cultures by measuring lactate dehydrogenase (LDH) in the culture media was significantly blocked by Evodia officinalis MeOH extract (OMU). Also, when OMU was treated in NaCN level cultures, the neurite outgrowth was regenerated as much as in the treatment of NaCN only. These results indicate that OMU treatment were not only protected the neurons against NaCN-induced damage but also regenerated the neurite outgrowth of neuroblastoma cells.

Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells

  • Kim, Dong Hoi;Kim, Dae Won;Jung, Bo Hyun;Lee, Jong Hun;Lee, Heesu;Hwang, Gwi Seo;Kang, Ki Sung;Lee, Jae Wook
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.326-334
    • /
    • 2019
  • Background: The objective of our study was to analyze the neuroprotective effects of ginsenoside derivatives Rb1, Rb2, Rc, Rd, Rg1, and Rg3 against glutamate-mediated neurotoxicity in HT22 hippocampal mouse neuron cells. Methods: The neuroprotective effect of ginsenosides were evaluated by measuring cell viability. Protein expressions of mitogen-activated protein kinase (MAPK), Bcl2, Bax, and apoptosis-inducing factor (AIF) were determined by Western blot analysis. The occurrence of apoptotic and death cells was determined by flow cytometry. Cellular level of $Ca^{2+}$ and reactive oxygen species (ROS) levels were evaluated by image analysis using the fluorescent probes Fluor-3 and 2',7'-dichlorodihydrofluorescein diacetate, respectively. In vivo efficacy of neuroprotection was evaluated using the Mongolian gerbil of ischemic brain injury model. Result: Reduction of cell viability by glutamate (5 mM) was significantly suppressed by treatment with ginsenoside Rb2. Phosphorylation of MAPKs, Bax, and nuclear AIF was gradually increased by treatment with 5 mM of glutamate and decreased by co-treatment with Rb2. The occurrence of apoptotic cells was decreased by treatment with Rb2 ($25.7{\mu}M$). Cellular $Ca^{2+}$ and ROS levels were decreased in the presence of Rb2, and in vivo data indicated that Rb2 treatment (10 mg/kg) significantly diminished the number of degenerated neurons. Conclusion: Our results suggest that Rb2 possesses neuroprotective properties that suppress glutamate-induced neurotoxicity. The molecular mechanism of Rb2 is by suppressing the MAPKs activity and AIF translocation.

글루타메이트로 유발한 세포독성에 대한 삼채추출물의 뇌세포 보호 효과 (Effects of Allium hookeri Extracts on Glutamate-induced Neurotoxicity in HT22 Cells)

  • 김지윤;고원민;김애정
    • 생약학회지
    • /
    • 제48권1호
    • /
    • pp.31-37
    • /
    • 2017
  • Glutamate-induced oxidative stress results in neuro-degenerative disorders in many central nervous system (CNS) such as Alzheimer's disease, ischemia, Huntington's disease, and Parkinson's disease. Our study was performed to investigate neuroprotective effects of Allium hookeri extracts (leaf, root, and whole) on glutamate-induced HT22 cells. In this study, ethanol extract of A. hookeri showed the outstanding neuroprotective effect in HT22 cells. In addition, we found that ethanol extract of A. hookeri root increased heme oxygenase (HO)-1 in HT22 cells. Moreover, ethanol extract of A. hookeri root also upregulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in HT22 cells. These results demonstrate that ethanol extract of A. hookeri root contributes neuroprotective effects against glutamate-induced oxidative stress in HT22 cells, via Nrf2-mediated HO-1 expression. Our study suggests that ethanol extract of A. hookeri root could be the potential agent for the treatment of many neuro-degenerative diseases.

OXIDANT-INDUCED NEUROTOXICITY WAS BLOCKED BY ANTIOXIDANTS AND METAL CHELATORS IN MOUSE CEREBRAL NEURON CULTURES

  • Park, S.T.;H.Y. Yoon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.89-89
    • /
    • 2002
  • It is well known that oxygen radicals induce neuronal cell damage by initiation of lipid peroxidation chain reaction. Recent work has been also demonstrated that enzymatically generated free radicals cause the release of glutamate and aspartate from cultured rat hippocampal slices.(omitted)

  • PDF

일차 배양한 흰쥐 대뇌피질세포의 흥분성 및 산화적 신경세포손상에 대한 소전재조환의 억제효과 (Inhibitory Effects of Xiaoshuan Zaizao Wan on Excitotoxic and Oxidative Neuronal Damage Induced in Primary Cultured Rat Cortical Cells)

  • 조정숙
    • 약학회지
    • /
    • 제47권6호
    • /
    • pp.369-375
    • /
    • 2003
  • Xiaoshuan Zaizao Wan (XZW) has been used in China to improve hemiplegia, deviation of eye and mouth, and dysphasia due to cerebral thrombosis. To characterize pharmacological actions of XZW, we evaluated its effects on neuronal cell damage induced in primary cultured rat cortical cells by various oxidative insults, glutamate or N-methyl-D-aspartate (NMDA), and $\beta$-amyloid fragment ($A_{\beta(25-35)}$). XZW was found to inhibit the oxidative neuronal damage induced by $H_2O_2$, xanthine/xanthine oxidase, or $Fe^{2+}$/ascorbic acid. It also attenuated the excitotoxic damage induced by glutamate or NMDA. The NMDA-induced neurotoxicity was more effectively inhibited than the glutamate-induced toxicity. In addition, we found that XZW protected neurons against the $A_{\beta(25-35)}$-induced toxicity. Moreover; XZW exhibited dramatic inhibition of lipid peroxidation in rat brain homogenates and mild 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together; these results demonstrate that XZW exerts neuroprotective effects against oxidative, excitotoxic, or $A_{\beta(25-35)}$-induced neuronal damage. These findings may provide pharmacological basis for its clinical usage treating the sequelae caused by cerebral thrombosis. Furthermore, XZW may exert beneficial effects on Alzheimer's disease and other oxidative stress-related neurodegenerative disorders.

글루타메이트에 의해 산화적 스트레스를 받은 HT22 세포에서 핑거루트의 신경세포 보호활성 (Neuroprotective Activity of Boesenbergia rotunda Against Glutamate Induced Oxidative Stress in HT22 Cells)

  • 김은서;마충제
    • 생약학회지
    • /
    • 제53권2호
    • /
    • pp.79-86
    • /
    • 2022
  • Excessive glutamate causes oxidative stress in neuronal cells, which can cause degenerative neurological disorders. We tried to find medicinal plant showed neuroprotective activity by using glutamate-injured HT22 cell as a model system. In this study, we found that Boesenbergia rotunda methanol extract showed neuroprotective activity against glutamate induced neurotoxicity in mouse hippocampal HT22 cells. B. rotunda methanol extract suppressed the formation of reactive oxygen species and decreased intracellular Ca2+concentration. Also, B. rotunda made mitochondrial membrane potential maintain to normal levels. In addition, B. rotunda increased total glutathione amount and activated antioxidative enzyme such as glutathione reductase and glutathione peroxidase compared to glutamate-treated groups. These results suggested that B. rotunda decreased neuronal cell death damaged by high concentrations of glutamate treatment, via antioxidative mechanism and might be one of candidate of development of new drug to treat neurodegenerative disease such as Alzheimer's disease.

Protective Effects of Ginsenosides on Cyanide-induced Neurotoxicity in Cultured Rat Cerebellar Granule Cells

  • Seong, yeon-Hee;Koh, Sang-Bum;Jo, Soon-Ok
    • Journal of Ginseng Research
    • /
    • 제24권4호
    • /
    • pp.196-201
    • /
    • 2000
  • 흰쥐 소뇌로부터 과립신경세포를 배양하여 NaCN으로 유도되는 신경세포손상에 대한 ginsenosides의 보호효과를 검토하였다. NaCN(I~10 M)을 배양된 세포에 1시간 동안 처리하면 농도 의존적으로 신경세포사를 일으켰다. Ginsenosides(Rb$_1$, Rc, Re, Ri, Rg$_1$)(0.5, 5 $\mu\textrm{g}$/ml를 세포에 전처치하면 10 mM NaCN으로 유도되는 세포사가 현저히 감소되었다. Rb$_1$과 Rc(5$\mu\textrm{g}$/ml)는 5 mM NaCN에 의하여 배양액 중으로 유리되는 glutamate의 증가를 현저히 억제하였으며, 1 mM N3CN에 의하여 유발되는 세포내 $Ca^{2+}$농도의 증가를 억제하였다. NaCN으로 유발되는 세포독성은 또한 MK-801, verapamil, NAME에 의하여도 억제되었다. 따라서, NaCN으로 유도되는 신경세포사는 glutamate release를 통한 NMDA수용체의 활성화와 그에 따른 $Ca^{2+}$의 세포내유입에 의한 것임을 알수 있고, ginsenosides, 특히 Rb$_1$과 Rc는 $Ca^{2+}$의 유입을 억제하므로서 NaCN에 의한 신경세포사를 억제하는 것으로 생각된다.

  • PDF