• 제목/요약/키워드: glutamate decarboxylase gene

검색결과 19건 처리시간 0.028초

애기장대 cDNA library로부터 Glutamate Decarboxylase 유전자의 부분 클로닝 및 서열분석 (Cloning and Nucleotide Sequencing of a Partial Glutamate Decarboxylase Gene from Arabidopsis thaliana cDNA Library)

  • 오석흥;최원규;최동성
    • KSBB Journal
    • /
    • 제16권1호
    • /
    • pp.36-40
    • /
    • 2001
  • In order to study the molecular mechanism of $\gamma$-aminobutyric acid (GABA) production in plants, we cloned and sequenced a partial glutamate decarboxylase (GAD) cDNA from the Arabidopsis thaliana cDNA library, using primers targeted at highly conserved sequences of the petunia GAD gene. The cDNA fragment was inserted into TA cloning vector with T7 promoter and the recombinant plasmid obtained was used to transform E. coli. The plasmid DNA purified from the transformed E. coli was digested with EcoRI and the presence of the insert was confirmed. Nucleotide sequence analysis showed that the fragment is a partial Arabidopsis thaliana GAD gene and that the sequence showed 98% and 78% identity to the region of the putative Arabidopsis thaliana GAD sequences deposited in GenBank, Accession nos: U46665 and U10034, respectively. The amino acid sequence deduced from the partial Arabidopsis thaliana GAD gene showed 99% and 91% identities to the GAD sequences deduced from the genes of the U46665 and U10034, respectively. The partial cDNA sequence determined may facilitate the study of the molecular mechanism of GABA metabolism in plants.

  • PDF

Cloning and Expression of a Full-Length Glutamate Decarboxylase Gene from Lactobacillus plantarum

  • Park, Ki-Bum;Oh, Suk-Heung
    • Preventive Nutrition and Food Science
    • /
    • 제9권4호
    • /
    • pp.324-329
    • /
    • 2004
  • In order to investigate the molecular mechanism of $\gamma$-aminobutyric acid (GABA) production in lactic acid bacteria, we cloned a glutamate decarboxylase (GAD) gene from Lactobacillus plantarum using polymerase chain reaction (PCR). One PCR product DNA was obtained and inserted into a TA cloning vector with a T7 promoter. The recombinant plasmid was used to transform E. coli. The insertion of the product was con­firmed by EcoRI digestion of the plasmid purified from the transformed E. coli. Nucleotide sequence analysis showed that the insert is a full-length Lactobacillus plantarum GAD and that the sequence is $100\%$ and $72\%$ identical to the regions of Lactobacillus plantarum GAD and Lactococcus lactis GAD sequences deposited in GenBank, accession nos: NP786643 and NP267446, respectively. The amino acid sequence deduced from the cloned Lactobacillus plantarum GAD gene showed $100\%$ and $68\%$ identities to the GAD sequences deduced from the genes of the NP786643 and NP267446, respectively. To express the GAD protein in E. coli, an expression vector with the GAD gene (pkk/GAD) was constructed and used to transform the UT481 E. coli strain and the expression was confirmed by analyzing the enzyme activity. The Lactobacillus plantarum GAD gene obtained may facilitate the study of the molecular mechanisms regulating GABA metabolism in lactic acid bacteria.

Characterization of Glutamate Decarboxylase (GAD) from Lactobacillus sakei A156 Isolated from Jeot-gal

  • Sa, Hyun Deok;Park, Ji Yeong;Jeong, Seon-Ju;Lee, Kang Wook;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.696-703
    • /
    • 2015
  • A gamma-aminobutyric acid (GABA)-producing microorganism was isolated from jeot-gal (anchovy), a Korean fermented seafood. The isolate, A156, produced GABA profusely when incubated in MRS broth with monosodium glutamate (3% (w/v)) at 37℃ for 48 h. A156 was identified as Lactobacillus sakei by 16S rRNA gene sequencing. The GABA conversion yield was 86% as determined by GABase enzyme assay. The gadB gene encoding glutamate decarboxylase (GAD) was cloned by PCR. gadC encoding a glutamate/GABA antiporter was located immediately upstream of gadB. The operon structure of gadCB was confirmed by RT-PCR. gadB was overexpressed in Escherichia coli BL21(DE3) and recombinant GAD was purified. The purified GAD was 54.4 kDa in size by SDS-PAGE. Maximum GAD activity was observed at pH 5.0 and 55℃ and the activity was dependent on pyridoxal 5'-phosphate. The Km and Vmax of GAD were 0.045 mM and 0.011 mM/min, respectively, when glutamate was used as the substrate.

Lactobacillus plantarum 유래 글루탐산 탈탄산효소의 고정화를 이용한 γ-aminobutyric acid의 생산 (Production of γ-Aminobutyric Acid Using Immobilized Glutamate Decarboxylase from Lactobacillus plantarum)

  • 이상재;이한승;이동우
    • 한국미생물·생명공학회지
    • /
    • 제43권3호
    • /
    • pp.300-305
    • /
    • 2015
  • 효율적인 γ-aminobutyric acid (GABA)의 생산을 위해 Lactobacillus plantarum WCFS1로부터 글루탐산 탈탄산효소(glutamate decarboxylase, GAD)를 대장균에 발현, 정제 후 silica beads에 covalent coupling 방법을 이용하여 고정화하였다. 고정화된 효소의 특성을 고정화하지 않은 효소와 비교한 결과, 모든 pH의 범위(pH 3.5–6.0)에서 80% 이상의 활성을 나타내었으며 pH 안정성과 열 안정성 모두 증대되었다. 이 고정화 효소를 packed-bed reactor에 충진하여 GABA의 생산성을 확인한 결과 1리터당 1시간에 최대 41.7 g의 GABA 생산이 가능한 것으로 확인되었다.

Characterization of the Recombinant Glutamate Decarboxylase of Lactobacillus brevis G144 Isolated from Galchi Jeotgal, a Korean Salted and Fermented Seafood

  • Kim, Jeong A;Park, Ji Yeong;Kim, Jeong Hwan
    • 한국미생물·생명공학회지
    • /
    • 제49권1호
    • /
    • pp.9-17
    • /
    • 2021
  • A γ-aminobutyric acid (GABA)-producing microorganism was isolated from galchi (hairtail fish, Trichiurus lepturus) jeotgal, a Korean salted and fermented seafood. The G144 isolate produced GABA excessively when incubated in MRS broth containing monosodium glutamate (MSG, 3%, w/v). G144 was identified as Lactobacillus brevis through 16S rRNA and recA gene sequencing. gadB and gadC encoding glutamate decarboxylase (GAD) and glutamate/GABA antiporter, respectively, were cloned and gadB was located downstream of gadC. The operon structure of gadCB was confirmed by reverse transcription (RT)-polymerase chain reaction. gadB was overexpressed in Escherichia coli and recombinant GAD was purified and its size was 54.4 kDa as evidenced by SDS-PAGE results. Maximum GAD activity was observed at pH 5.0 and 40℃ and the activity was dependent on pyridoxal 5'-phophate. The Km and Vmax of GAD were 8.6 mM and 0.01 mM/min, respectively.

Characterization of a Glutamate Decarboxylase (GAD) from Enterococcus avium M5 Isolated from Jeotgal, a Korean Fermented Seafood

  • Lee, Kang Wook;Shim, Jae Min;Yao, Zhuang;Kim, Jeong A;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1216-1222
    • /
    • 2017
  • To develop starters for the production of functional foods or materials, lactic acid bacteria producing ${\gamma}-aminobutyric$ acid (GABA) were screened from jeotgals, Korean fermented seafoods. One isolate producing a high amount of GABA from monosodium $\text\tiny{L}$-glutamate (MSG) was identified as Enterococcus avium by 16S rRNA gene sequencing. E. avium M5 produced $18.47{\pm}1.26mg/ml$ GABA when incubated for 48 h at $37^{\circ}C$ in MRS broth with MSG (3% (w/v)). A gadB gene encoding glutamate decarboxylase (GAD) was cloned and overexpressed in E. coli BL21 (DE3) using the pET26b (+) expression vector. Recombinant GAD was purified through a Ni-NTA column and the size was estimated to be 53 kDa by SDS-PAGE. Maximum GAD activity was observed at pH 4.5 and $55^{\circ}C$and the activity was dependent on pyridoxal 5'-phosphate. The $K_m$ and $V_{max}$ values of GAD were $3.26{\pm}0.21mM$ and $0.0120{\pm}0.0001mM/min$, respectively, when MSG was used as a substrate. Enterococcus avium M5 secretes a lot of GABA when grown on MRS with MSG, and the strain is useful for the production of fermented foods containing a high amount of GABA.

Bioconversion of Gamma-Aminobutyric Acid from Monosodium Glutamate by Lactobacillus brevis Bmb5

  • Jeong, Anna;Yong, Cheng Chung;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1745-1748
    • /
    • 2019
  • Gamma-aminobutyric acid (GABA) plays important roles in host physiology. However, the effects of GABA are greatly restricted due to its low bioavailability in the human body. Here, a high acid-tolerance GABA-producing strain, Lactobacillus brevis Bmb5, was isolated from kimchi. Bmb5 converted glutamate to GABA (7.23 ± 0.68 ㎍/μl) at a rate of 72.3%. The expression of gadB gene, encoding the enzyme involved in the decarboxylation of glutamate to GABA, was decreased upon incubation. Our findings indicate GABA production in Bmb5 is not directly correlated with gadB gene expression, providing new insight into the mechanisms underlying GABA production in Lactobacillus.

Characterization of γ-Aminobutyric acid(GABA) produced by a lactic acid bacterium from button mushroom bed

  • Lee, Yun-Seok;Song, Tae-Young;Kong, Won-Sik;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제11권4호
    • /
    • pp.181-186
    • /
    • 2013
  • ${\gamma}$-Aminobutyric acid(GABA) is a four carbon non-protein amino acid that has several well-known physiological functions, such as a postsynaptic inhibitory neurotransmitter in the brain and induction of hypotensive and tranquilizer effects. A lactic acid bacterium was isolated from button mushroom bed, which is showing high GABA productivity by TLC or HPLC analysis. The strain was identified as Lactobacillus hilgardii by analysis of 16S rDNA gene sequence. When the maximum production of GABA by L. hilgardii was investigated with various concentration of monosodium glutamate, the yield of GABA reached to be 53.65 mM at 1% mono sodium glutamate (MSG) in flask cultivation. A Glutamate decarboxylase (GAD) enzyme, which was known to convert MSG to GABA, was purified from a cell-free extract of L. hilgardii and the molecular weights of purified GAD was estimated to 60,000 by SDS-PAGE. The optimum pH and temperature of GAD were at pH4.6 and at $37^{\circ}C$, respectively. The GAD activity was increased by the addition of sulfate ions such as ammonium sulfate, sodium sulfate and magnesium sulfate, indicating that the increase of hydrophobic interaction causes the increase of GAD activity.

Properties of a Novel Glutamate Decarboxylase (GAD) from Levilactobacillus brevis B737 Isolated from Cabbage Kimchi

  • Tae Jin Kim;Min Jae Kim;Bong Sin Kim;Ji Yeon Yoo;Yun Ji Kang;Jeong Hwan Kim
    • 한국미생물·생명공학회지
    • /
    • 제50권3호
    • /
    • pp.319-327
    • /
    • 2022
  • γ-Aminobutyric acid (GABA) is a multi-functional compound with broad applications for food industry. GABA producing bacteria were isolated from cabbage kimchi. Among them, B737 was the best GABA producer when culture supernatants were analyzed by TLC. B737 was identified as Levilactobacillus brevis by 16S rRNA gene sequencing. Its glutamate decarboxylase (GAD) gene was cloned by PCR and the nucleotide sequence determined. B737 GAD consisting of 485 amino acids is the largest in size among GADs reported from LAB so far. gadB from L. brevis B737 was overexpressed in Escherichia. coli BL21(DE3) using pET26b(+).pET26b(+). The recombinant GAD was purified and its size was 55 kDa by SDS-PAGE. Maximum GAD activity was observed at pH 5 and 40℃ and the activity was dependent on pyridoxal 5'-phosphate. Km and Vmax of recombinant GAD were 6.2 ± 0.06 mM and 0.34 ± 0.002 mM/min, respectively. L. brevis B737 can be used as a starter for fermented foods with high GABA contents.