• Title/Summary/Keyword: glut2

Search Result 173, Processing Time 0.026 seconds

GLUT Phosphorylation May be Required to GLUT Translocation Mechanism

  • Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.497-506
    • /
    • 2000
  • In this work, GLUTs phosphorylations by a downstream effector of PI3-kinase, $PKC-{\zeta},$ were studied, and GLUT4 phosphorylation was compared with GLUT2 phosphorylation in relation to the translocation mechanism. Prior to phosphorylation experiment, $PKC-{\zeta}$ kinase activity was determined as $20.76{\pm}4.09$ pmoles Pi/min/25 ng enzymes. GLUT4 was phosphorylated by $PKC-{\zeta}$ and the phosphorylation was increased on the vesicles immunoadsorpted from LDM and on GLUT4 immunoprecipitated from GLUT4- contianing vesicles of adipocytes treated with insulin. However, GLUT2 in hepatocytes was neither phosphorylated by $PKC-{\zeta}$ nor changed in response to insulin treatment. It was confirmed by measuring the subcellular distribution of GLUT2 based on GLUT2 immunoblot density among the four membrane fractions before and after insulin treatment. Total GLUT2 distributions at PM, LYSO, HDM and LDM were $37.7{\pm}12.0%,\;42.4{\pm}12.1%,\;19.2{\pm}5.0%\;and\;0.7{\pm}1.2%$ in the absence of insulin. Total GLUT2 distribution in the presence of insulin was almost same as that in the absence of insulin. Present data with previous findings suggest that GLUT4 translocation may be attributed to GLUT4 phosphorylation by $PKC-{\zeta}$ but GLUT2 does not translocate because GLUT2 is not phosphorylated by the kinase. Therefore, GLUT phosphorylation may be required in GLUT translocation mechanism.

  • PDF

Effects of Glucose and IGF-I on Expression of Glucose Transporter 1 (Glut1) and Development of Preimplantation Mouse Embryo (생쥐의 착상전 배아의 발생과 Glucose Transporter 1 (Glut1) 발현에 대한 포도당과 IGF-I의 영향)

  • 전한식;계명찬;김종월;강춘빈;김문규
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.205-212
    • /
    • 1998
  • A sodium-independent facilitative glucose transporter 1 (Glut1) is a major route by which glucose can be transported across the plasma membrane of mouse embryo. Although it has been known that insulin-like growth factor-I (IGF-I) promotes glucose transport into the mouse embryo, whether IGF-I directly regulates transcription of Glut1 has been uncovered in mouse preimplantation embryo. This study was aimed to elucidate the role of glucose and IGF-I in development and Glut1 expression in preimplantation mouse embryo. Two-cell embryos developed in blastocyst regardless of the glucose in the presence of pyruvate. IGF-I significantly increased the number of blastomeres in the mid-blastula. Deprivation of glucose did not affect the amount of Glut1 transcripts in morula cultured from 2-cell embryo. IGF-I potentiated Glut1 expression in morula cultured from 2-cell embryo even in the absence of glucose. Taken together, it is concluded that depletion of glucose does not promote Glut1 expression the in morula cultured form 2-cell embryo, and that increment of Glut1 expression possibly mediates embryotropic effect of IGF-I on preimplantation mouse embryo.

  • PDF

Inhibition of GLUT-1 Expressed in Xenopus laevis Oocytes by Acetoxyscirpendiol of Paecilomyces tenuipes

  • Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.74-78
    • /
    • 2004
  • Paecilomyces tenuipes, a caterpillar fungus, contains many health-promoting ingredients. Recent reports indicate that consumption of P. tenuipes helps reducing blood sugar content for diabetes. Mechanism for reduction in the circulatory sugar content, however, still remains least understood. Methanolic extraction of P. tenuipes (MPT) was prepared and acetoxyscirpendiol (ASD) was subsequently purified limn MPT. Glucose transporter-1 (GLUT-1) was expressed in the Xenopus oocytes and the effect of MPT or ASD on the expressed GLUT-1 was analyzed according to the uptake of 2-dideoxy-D-glucose (2-DOG). MPT was shown to inhibit GLUT-1 activity significant1y compared to the non-treated control. In the presence of ASD and its derivatives, GLUT-1 activity was greatly inhibited in a dose-dependent manner. Among ASD and its derivatives, AS-1 showed most significant inhibition. Taken together, these results strongly indicate that ASD in P. tenuipes may serve as a functional substance in lowering blood sugar in the circulatory system. ASD and its derivatives can be utilized as inhibitors of GLUT-1.

Differential Expression of Glucose Transporter Gene in Mouse Early Embryos (생쥐 초기배아의 Glucose Transporter유전자 발현 양상에 관한 연구)

  • Youm, Hye-Won;Byun, Hye-Kyung;Song, Gyun-Ji;Kim, Hae-Kwon;Lee, Ho-Joon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.1
    • /
    • pp.77-86
    • /
    • 1998
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose-transporter (GLUT) proteins. The aim of this study was to determine which class of glucose transporter molecules was responsible for uptake of glucose in the mouse early embryo and at which stage the corresponding genes were expressed. In addition, co-culture system with vero cell was used to investigate the effect of the system on GLUT expression. Two-cell stage embryos were collected from the superovulated ICR female and divided into 3 groups. As a control, embryos were cultured in 0.4% BSA-T6 medium which includes glucose. For the experimental groups, embryos were cultured in either co-culture system with vero cells or glucose-free T6 medium supplemented with 0.4% BSA and pyruvate as an energy substrate. 2-cell to blastocyst stage embryos in those groups were respectively collected into microtubes (50 embryos/tube). Total RNA was extracted and RT-PCR was performed. The products were analysed after staining ethidium bromide by 2% agarose gel electrophoresis. Blastocysts were collected from each group at l20hr after hCG injection. They were fixed in 2.5% glutaraldehyde, stained with hoechst, and mounted for observation. In control, GLUT1 was expressed from 4-cell to blastocyst. GLUT2 and GLUT3 were expressed in morula and blastocyst. GLUT4 was expressed in all stages. When embryos were cultured in glucose-free medium, no significant difference was shown in the expression of GLUT1, 2 and 3, compared to control. However GLUT4 was not expressed until morular stage. When embryos were co-cultured with vero cell, there was no significant difference in the expression of GLUT1, 2, 3 and 4 compared to control. To determine cell growth of embryos, the average cell number of blastocyst was counted. The cell number of co-culture ($93.8{\pm}3.1$, n=35) is significantly higher than that of control and glucose-free group ($76.6{\pm}3.8$, n=35 and $68.2{\pm}4.3$, n=30). This study shows that the GLUT genes are expressed differently according to embryo stage. GLUTs were detectable throughout mouse preimplantation development in control and co-culture groups. However, GLUT4 was not detected from 2- to 8-cell stage but detected from morula stage in glucose-free medium, suggested that GLUT genes are expressed autocrinally in the embryo regardless of the presence of glucose as an energy substrate. In addition, co-culture system can increase the cell count of blastocyst but not improve the expression of GLUT. In conclusion, expression of GLUT is dependent on embryo stage in preimplantation embryo development.

  • PDF

Decreased GLUT 4 mRNA Levels did not Related with Degree of Hyperglycemia in Skeletal Muscles of Streptozotocin-induced Diabetic Rats

  • Park, So-Young;Kim, Jong-Yeon;Kim, Yong-Woon;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.231-236
    • /
    • 1996
  • In our previous study (Kim et al, 1991), GLUT 4 protein content correlated negatively with plasma glucose levels in skeletal muscles of STZ-induced diabetic rats. Thus, in this study, to confirm whether expression of GLUT 4 correlate negatively with degree of hyperglycemia, we measured levels of GLUT 4 mRNA in red and white gastrocnemius muscles in STZ-induced mild and severe diabetic rats. Rats were randomly assigned to control, mild, and severe diabetic groups, and the diabetes was induced by intraperitoneal administration of STZ. The experiment was carried out 10 days after STZ administration. Gastrocnemius red and white muscles were used fur the measurement of GLUT 4 expression. Plasma glucose levels of mild and severe diabetic rats were increased compared to control rats (control, mild, and severe diabetes; $6.4{\pm}0.32,\;9.4{\pm}0.68,\;and\;22.0{\pm}0.58$ mmol/L, respectively). Plasma insulin levels of mild and severe diabetic rats were decreased compared to control rats (control, mild, and severe diabetes; $198{\pm}37,\;l14{\pm}14,\;and\;90{\pm}15$ pmol/L, respectively). GLUT 4 mRNA levels of gastrocnemius red muscles in mild and severe diabetic rats were decreased compared to control rats ($64{\pm}1.2%\;and\;71{\pm}2.0%$ of control, respectively), but GLUT 4 mRNA levels in gastrocnemius white muscles were unaltered in diabetic rats. In summary, GLUT 4 mRNA levels were decreased in STZ-induced diabetic rats but did not correlated negatively with degree of hyperglycemia, and this result suggest that the regulatory mechanisms of decreased GLUT 4 mRNA levels are hypoinsulinemia and/or other metabolic factor but not hyperglycemia. And regulation of GLUT 4 expression in STZ-induced diabetes between red and white enriched skeletal muscles may be related to a fiber specific gene regulatory mechanism.

  • PDF

The Ability of FDG Uptake Ratio and Glut-1 Expression to Predict Mediastinal Lymph Node Metastasis in Resected Non-small Cell Lung Cancer (절제된 비소세포암에서 FDG 섭취비와 Glut-1 발현 정도를 이용한 종격동 림프선 전이 여부 예측)

  • Cho, Suk-Ki;Lee, Eung-Bae
    • Journal of Chest Surgery
    • /
    • v.43 no.5
    • /
    • pp.506-512
    • /
    • 2010
  • Background: This study was designed to evaluate the FDG uptake ratio of mediastinal node and primary tumors using integrated PET/CT imaging combined with Glut-1 expression of the primary tumor in order to predict the N2 status more accurately in NSCLC patients. Material and Method: Patients who underwent integrated PET/CT scanning with a detectable mSUV for both primary tumors and mediastinal lymph nodes were eligible for this study. The FDG uptake ratio between the mediastinal node and the primary tumor was calculated. Result: The average mSUV of primary tumors and mediastinal nodes were, respectively, $7.4{\pm}2.2$ and $4.2{\pm}2.2$ in N2-positive patients and $7.6{\pm}3.7$ and $2.8{\pm}6.9$ in N2-negative patients. The mean FDG uptake ratio of mediastinal node to primary tumor were $0.58{\pm}0.23$ for malignant N2 lymph nodes and $0.45{\pm}0.20$ for benign lymph nodes (p<0.05). Models which combined Glut-1 expression with an FDG ratio have better diagnostic power than models that use the FDG uptake ratio alone. Conclusion: In some patients with a previous history of pulmonary tuberculosis or other inflammatory lung diseases, an FDG uptake ratio combined with Glut-1 expression may be useful in diagnosing mediastinal node metastasis more exactly.

Cloning and Distribution of Facilitative Glucose Transporter 2 (SLC2A2) in Pigs

  • Zuo, Jianjun;Huang, Zhiyi;Zhi, Aimin;Zou, Shigeng;Zhou, Xiangyan;Dai, Fawen;Ye, Hui;Feng, Dingyuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1159-1165
    • /
    • 2010
  • Glucose is the main energy source for mammalian cells and its absorption is co-mediated by two different families of glucose transporters, sodium/glucose co-transporters (SGLTs) and facilitative glucose transporters (GLUTs). Here, we report the cloning and tissue distribution of porcine GLUT2. The GLUT2 was cloned by RACE and its cDNA was 2,051 bp long (GenBank accession no. EF140874). An AAATAA consensus sequence at nucleotide positions 1936-1941 was located upstream of the poly $(A)^+$ tail. Open reading frame analysis suggested that porcine GLUT2 contained 524 amino acids, with molecular weight of 57 kDa. The amino acid sequence of porcine GLUT2 was 87% and 79.4% identical with human and mouse GLUT2, respectively. GLUT2 mRNA was detected at highest level in porcine liver, at moderate levels in the small intestine and kidney, and at low levels in the brain, lung, muscle and heart. In the small intestine, the highest level was in the jejunum. In conclusion, the mRNA expression of GLUT2 was not only differentially regulated by age, but also differentially distributed along the small intestine of piglets, which may be related to availability of different intestinal luminal substrate concentrations resulting from different food sources and digestibility.

Molecular Cloning and mRNA Expression of the Porcine Insulin-responsive Glucose Transporter (GLUT4)

  • Zuo, Jianjun;Dai, Fawen;Feng, Dingyuan;Cao, Qingyun;Ye, Hui;Dong, Zemin;Xia, Weiguang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.640-648
    • /
    • 2010
  • Insulin-responsive glucose transporter 4 (GLUT4) is a member of the glucose transporter family and mainly presents in skeletal muscle and adipose tissue. To clarify the molecular structure of porcine GLUT4, RACE was used to clone its cDNA. Several cDNA clones corresponding to different regions of GLUT4 were obtained by amplifying reverse-transcriptase products of total RNA extracted from Landrace porcine skeletal muscles. Nucleotide sequence analysis of the cDNA clones revealed that porcine GLUT4 cDNA was composed of 2,491 base pairs with a coding region of 509 amino acids. The deduced amino acid sequence was over 90% identical to human, rabbit and cattle GLUT4. The tissue distribution of GLUT4 was also examined by Real-time RT-PCR. The mRNA expression abundance of GLUT4 was heart>liver, skeletal muscle and brain>lung, kidney and intestine. The developmental expression of GLUT4 and insulin receptor (IR) was also examined by Real-time RT-PCR using total RNA extracted from longissimus dorsi (LM), semimembranosus (SM), and semitendinosus (SD) muscle of Landrace at the age of 1, 7, 30, 60 and 90 d. It was shown that there was significant difference in the mRNA expression level of GLUT4 in skeletal muscles of Landrace at different ages (p<0.05). The mRNA expression level of IR also showed significant difference at different ages (p<0.05). The developmental change in the mRNA expression abundance of GLUT4 was similar to that in IR, and both showed a higher level at birth and 30 d than at other ages. However, there was no significant tissue difference in the mRNA expression of GLUT4 or IR (p>0.05). These results showed that the nucleotide sequence of the cDNA clones was highly identical with human, rabbit and cattle GLUT4 and the developmental change of GLUT4 mRNA in skeletal muscles was similar to that of IR, suggesting that porcine GLUT4 might be an insulin-responsive glucose transporter. Moreover, the tissue distribution of GLUT4 mRNA showed that GLUT4 might be an important nutritional transporter in porcine skeletal muscles.

Effects of Dietary Caloric Restriction and Exercise on GLUT 2 in Liver and GLUT-4 and VAMP-2 in Muscle Tissue of Diabetic Rats

  • Jeong, Ilgyu;Oh, Myungjin;Jang, Moonnyeo;Koh, Yunsuk;Biggerstaff, Kyle D.;Nichols, David;Ben-Ezra, Vic
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • It has been shown that both caloric restriction and exercise, enhances glucose uptake through translocation of GLUT-4 protein. It remains unclear how exercise and caloric restriction affect the changes in VAMP (vesicle-associated membrane protein) in skeletal muscle and GLUT-2 in liver. This study investigated the effects of exercise training and caloric restriction on the expressions of glucose transport relating proteins in muscle and liver tissues in diabetic rats. Forty male Sprague-Dawley rats (250±10 g; 8 week in age) were assigned equally to four different groups; control (C), exercise only (E), dietary restriction only (D) and dietary restriction and exercise (DE). Daily food consumption was monitored to establish baseline intake. Both C and E groups consumed baseline food intake while D and DE groups were provided with only 60% of baseline total food intake. Forty-eight hours after intraperitoneal injection of STZ (50 mg/kg), diabetes was confirmed (8-hr fasting blood glucose levels ≥300 mg/dl). Rats in the E and DE groups exercised on a motorized treadmill for 30 min/d, 5 days/week for 4 weeks (5 min running at 3 m/min, 0% grade; 8 m/min for the next 5min, and then 15 m/min for 20 min). Rats were sacrificed 48 hrs after the last bout of exercise. Soleus muscle and liver were extracted to analyze for GLUT-4, VAMP-2, and GLUT-2, respectively. All variables were analyzed using the Western Blotting technique. All values were expressed as optical volume measured by optical density. A Two-way ANOVA was used to examine the difference between groups and applied Duncan's test for post-hoc. No significant differences in GLUT-2 expression were found among groups. However, E (280133±13228 arbitrary units{AU}) and DE (268833±14424 AU) groups showed significantly higher (p<.001) levels of GLUT-4 as compared with C (34461±2099 AU) and D groups (27847±703 AU). VAMP-2 protein expression increased (p<.001) in E (184137±7803 AU) and DE (189800±10856 AU) groups as compared to C (74201±8296AU) and D (72967±863 AU) groups. These results suggest that either exercise with or without caloric restriction increases the up-regulation of GLUT-4 and VAMP-2 in skeletal muscle of diabetic rats. However, GLUT-2 protein in liver was not affected by either exercise or exercise with caloric restriction.

Effect of amaranth seed extracts on glycemic control in HepG2 cells (HepG2 세포에서 아마란스 종자 에탄올 추출물이 포도당 흡수 조절에 미치는 효과)

  • Park, So Jin;Park, Jong Kun;Hwang, Eunhee
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.603-617
    • /
    • 2021
  • Purpose: This study was carried out to investigate the effect of amaranth seed extracts on glycemic regulation in HepG2 cells. The 80% ethanol extracts of amaranth seeds were used to evaluate α-amylase and α-glucosidase activities, cell viability, glucose uptake and messenger RNA (mRNA) expression levels of acetyl-CoA carboxylase (ACC), glucose transporter (GLUT)-2, GLUT-4, insulin receptor substrate (IRS)-1 and IRS-2. Methods: The samples were prepared and divided into 4 groups, including germinated black amaranth (GBA), black amaranth (BA), germinated yellow amaranth (GYA) and yellow amaranth (YA). Glucose hydrolytic enzyme, α-amylase and α-glucosidase activities were examined using a proper protocol. In addition, cell viability was measured by MTT assay. Glucose uptake in cells was measured using an assay kit. The mRNA expression levels of ACC, GLUT-2, GLUT-4, IRS-1 and IRS-2 were measured by reverse transcription polymerase chain reaction. Results: The inhibitory activities of α-amylase and α-glucosidase were highly observed in GBA, followed by BA, GYA and YA. Similar results were observed for glucose. The GBA effect was similar compared to the positive control group. The mRNA expression levels of ACC, GLUT-2, GLUT-4, IRS-1, and IRS-2 were significantly increased. The potential hypoglycemic effects of amaranth seed extracts were observed due to the increase in glucose metabolic enzyme activity, and glucose uptake was mediated through the upregulation of ACC, GLUT-2, GLUT-4, IRS-1, and IRS-2 expression levels. Conclusion: Our findings suggest that the amaranth seed is a potential candidate to prevent a diabetes. The present study demonstrated the possibility of using amaranth seeds, especially GBA and BA for glycemic control.