• Title/Summary/Keyword: glucosides

Search Result 141, Processing Time 0.031 seconds

Biosynthesis of Three Chalcone β-D-glucosides by Glycosyltransferase from Bacillus subtilis ATCC 6633

  • Fei, Yinuo;Shao, Yan;Wang, Weiwei;Cheng, Yatian;Yu, Boyang;He, Xiaorong;Zhang, Jian
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.174-180
    • /
    • 2021
  • Chalcones exhibit multiple biological activities. Various studies have attempted to modify the structure of chalcones with a special focus on the addition of substituents to the benzene rings. However, these chemical modifications did not improve the water solubility and bioavailability of chalcones. Glycosylation can markedly affect the physical and chemical properties of hydrophobic compounds. Here, we evaluated the ability of a highly promiscuous glycosyltransferase (GT) BsGT1 from Bacillus subtilis ATCC 6633 to biosynthesize chalcone glucosides. Purified BsGT1 catalyzed the conversion of 4'-hydroxychalcone (compound 1), 4'-hydroxy-4-methylchalcone (compound 2), and 4-hydroxy-4'-methoxychalcone (compound 3), into chalcone 4'-O-β-D-glucoside (compound 1a), 4-methylchalcone 4'-O-β-D-glucoside (compound 2a), and 4'-methoxychalcone 4-O-β-D-glucoside (compound 3a), respectively. To avoid the addition of expensive uridine diphosphate glucose (UDP-Glc), a whole-cell biotransformation system was employed to provide a natural intracellular environment for in situ co-factor regeneration. The yields of compounds 1a, 2a, and 3a were as high as 90.38%, 100% and 74.79%, respectively. The successful co-expression of BsGT1 with phosphoglucomutase (PGM) and UDP-Glc pyrophosphorylase (GalU), which are involved in the biosynthetic pathway of UDP-Glc, further improved the conversion rates of chalcones (the yields of compounds 1a and 3a increased by approximately 10%). In conclusion, we demonstrated an effective whole-cell biocatalytic system for the enzymatic biosynthesis of chalcone β-D-glucoside derivatives.

Phytosterolins from phytolacca esculenta

  • Woo, Won-Sick;Kang, Sam-Sik
    • YAKHAK HOEJI
    • /
    • v.17 no.3
    • /
    • pp.161-166
    • /
    • 1973
  • A glucoside mixture of ${\alpha}$-spinasterol and ${\delta}^7$-stigmastenol was isoated from the roots of Phytolacca esculenta $_{VAN}$ H$_{OUTTE}4. This the first reported occurrence of these glucosides in Phytolaccaceae family.

  • PDF

Triterpenoid glycosides from rosa rugosa

  • Young, Han-Suk;Park, Jong-Cheol;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.10 no.4
    • /
    • pp.219-222
    • /
    • 1987
  • From the underground parts of Rosa rugosa(Rosaceae), 28-0-glucosides of euscaphic acid, tormentic acid and arjunic acid were isolated and characterized by spectral data.

  • PDF

Growth and $\beta$-Glucosidase Activity of Bifidobacterium

  • CHOI, YUN-JUNG;CHUL-JAI KIM;SO-YOUNG PARK;YOUNG-TAE KO;HOO-KIL JEONG;GEUN-EOG JI
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.255-259
    • /
    • 1996
  • $\beta$-Glucosidase was known to be involved in the mutagenic activation of $\beta$-glucosides. The level of $\beta$-glucosidase in the feces of adults was 2.7 times higher than that of infants. There was no difference in the percentage of $\beta$-glucosidase positive strains among Bifidobacterium isolates between adults and infants, corresponding to 90 and 92$%$, respectively. However, the strains from adults showed 1.9 times higher enzyme activity than those from infants when grown in Brain Heart Infusion medium. $\beta$-Glucosidase negative strains could not ferment $\beta$-glucosidase substrates, such as cellobiose, salicin, naringin, esculin and arbutin. Presence of $\beta$-glucosidase in Bifidobacterium did not alter the degree of growth in reconstituted skim milk. The $\beta$-glucosidase level was much lower in milk and vegetable medium, although cells grew above $10^8$cfu/ml, than in BHI medium. This study suggests that metabolic activation of the $\beta$-glucosides by Bifidobacterium $\beta$-glucosidase varies significantly depending on types of growth medium.

  • PDF

Distribution of Floral Anthocyanins in the Species of Genus Hibiscus (Hibiscus속 종내의 anthocyanin 분포)

  • Kim, Jong Hwa;Son, Chang Youl
    • Horticultural Science & Technology
    • /
    • v.16 no.3
    • /
    • pp.381-384
    • /
    • 1998
  • Intersectional differences in anthocyanin composition were observed in a survey of floral anthocyanins of 27 species in genus Hibiscus (Malvaceae). The most common suits of floral anthocyanins were 3-xylosylglucosides and 3-glucosides of delphinidin and cyanidin in species of section Trichospermum, Fucaria, Trionum, Abelmoschus, and Ketmia. Cyanidin 3-sophoroside was the predominant anthocyanin in species of section Lilibiscus. Six common anthocyanidin 3-glucosides and corresponding malonates were detected only in the species of section Bombycella. These intersectional variation coincided generally with proposed sectional boundaries based on morphological characteristics. Anthocyanin composition was more complicated in self-incompatible species than in self-compatible species. The systematic significance of diverse anthocyanin profile was discussed in the aspect of pollination ecology.

  • PDF

Characterization of Isoflavone Profiles in Soy Cookies Using ${\beta}-Glucosidase-containing$ Almond Powder (아몬드 첨가 콩 과자 제조 중 이소플라본 특성 변화)

  • Yang, Seung-Ok;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.461-468
    • /
    • 2006
  • 콩가루 50, 75, 100% 첨가 콩 반죽에 0, 1, 3%의 아몬드 첨가와 0, 20, 40분의 반죽 정치시간을 통해 제조 된 콩 과자 반죽에서 ${\beta}-glucosidase$ 활성을 측정하였고 콩 과자에서의 이소플라본 함량 및 aglycone 이소플라본 변화를 연구하였다. 일반적으로 콩가루 첨가량이 증가 될수록, 아몬드 첨가량이 증가할수록 반죽의 ${\beta}-glucosidase$ 효소 활성도는 높았으며 반죽 정치시간 20분이 0분이나 40분 보다 효소 활성이 유의적으로 높았다. 콩 과자 반죽에 포함된 이소플라본 함량은 예상된 함량 보다 약 15.2-31.5% 가량 적게 검출 되었다. 콩가루의 이소플라본 분포에 비해 콩 과자는 aglycones과 $6@-O-{\beta}-glucosides$는 증가하였고 $6@-O-malonyl-{\beta}-glucosides$는 감소하였다. 콩 과자의 aglycone 함량 증가에는 아몬드 첨가 보다 반죽 정치시간 증가가 더 효율적이었다.

A Study on Alkyl Glucoside Synthesis by Amphiphilic Phase Enzyme Reaction (양친매상 효소반응에 의한 알킬글루코시드의 합성연구)

  • 허주형;임교빈김해성
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.511-517
    • /
    • 1996
  • An amphiphilic phase enzyme reaction was used to synthesize alkyl glucosides from glucose and alkyl alcohol with immobilized ${\beta}$-glucosidase using four glycol ether cosolvents(monoglyme, diglyme, 2-methoxyethanol, and 1,4-dioxane). Monoglyme was shown to be the best cosolvent for the amphiphilic phase medium composed of water/cosolvent/alkyl alcohol admixture. To obtain high yield of alkyl glucoside by amphiphilic phase enzyme reaction, hydrophilicity-hydrophobicity of amphiphilic media and enzyme microenvironment was optimized from the viewpoints of substrate solubility, enzyme activity, water activity, and dynamic equilibrium between glucose alcoholysis and glucoside hydrolysis. Under optimum reaction conditions, the highest concentrations of hexyl, octyl, decyl, and dodecyl glucosides were 18.2, 9.68, 7.27, and 6.03g/L, respectively.

  • PDF